ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Behavior of Alkali-Silica Reaction-Affected Reinforced Concrete Elements Subjected to Shear

Author(s): Anca C. Ferche and Frank J. Vecchio

Publication: Structural Journal

Volume: 118

Issue: 4

Appears on pages(s): 163-174

Keywords: alkali-silica reaction; ductility reduction; reinforced concrete; shear capacity

Date: 7/1/2021

Abstract:
Past research on the effects of alkali-silica reaction (ASR) on the behavior of shear-critical concrete structures have yielded contradictory results, whether they have come from full-scale tests on specimens extracted from existing ASR-affected structures or from laboratory specimens conditioned to accelerate the rate of the reaction. Both increases and decreases in the shear capacity of ASR-affected specimens were reported, when compared with either corresponding control specimens or theoretical strength. Experiments were performed to better characterize the response of ASR-affected reinforced concrete. Ten panels were constructed and tested under in-plane pure shear loading conditions. The panels, containing varying amounts of in-plane and out-of-plane reinforcement, were cast with either non-reactive aggregate, reactive fine aggregate (Jobe-Newman), or reactive coarse aggregate (Spratt). To accelerate the rate of the reaction, the specimens were conditioned under elevated humidity and temperature. Test results indicated that the load capacity of the panels was not adversely affected by ASR strains ranging between 1.2 × 10–3 and 2.5 × 10–3, as measured on corresponding standard expansion prisms, and that the shear stress at first cracking was in fact elevated. The panels’ deformation capacity, however, was reduced by approximately 30% for the reactive specimens compared to similar non-reactive ones.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Please enter this 5 digit unlock code on the web page.