ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Impact Damage Retrofit of RC Bridge Girder Previously Retrofitted with CFRP Fabric

Author(s): Abheetha Peiris and Issam Harik

Publication: Symposium Paper

Volume: 346

Issue:

Appears on pages(s): 31-50

Keywords: bridge; CFRP; heavy fabric; impact damage; reinforced concrete; retrofit SP-346: Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures 31

DOI: 10.14359/51730492

Date: 1/1/2021

Abstract:
Following an over-height truck impact, Carbon Fiber Reinforced Polymer (CFRP) fabric was used to retrofit the exterior girder in a four-span Reinforced Concrete Deck on Girder (RCDG) Bridge on route KY 562 that passes over Interstate 71 in Gallatin County, Kentucky. The impacted span (Span 3) traverses the two northbound lanes of Interstate 71. While the initial retrofit was completed in May 2015, a second impact in September 2018 damaged all four girders in Span 3. The previously retrofitted exterior girder (Girder 4) suffered the brunt of the impact, with all steel rebars in the bottom layer being severed. Damage to Girders 1, 2, and 3 was minor and none of the bars were damaged. A two-stage approach for the containment and repair of the damaged girders following an over-height truck impact was implemented when retrofitting the bridge. The repair and strengthening of all the girders using CFRP fabric was the economical option compared to the alternative option of replacing the RCDG bridge. The initial CFRP retrofit was found to have failed in local debonding around the impact location. The CFRP retrofit material that was not immediately near the impact location was found to be well bonded to the concrete. The removal of this material and subsequent surface preparation for the new retrofit was time consuming and challenging due to traffic constraints. In Girder 4 all but one of the main rebars were replaced by removing the damaged sections and installing straight rebars connected to the existing rebars with couplers. One of the rebars could not be replaced. A heavy CFRP unidirectional fabric, having a capacity of 534 kN (120,000 lbs.) per 305 mm (1 ft.) width of fabric, was selected for the flexural strengthening and deployed to replace the loss in load carrying capacity. A lighter unidirectional CFRP fabric was selected for anchoring and shear strengthening of all the girders, and to serve as containment of crushed concrete in the event of future over-height impacts. The retrofit with spliced steel rebars and CFRP fabric proved to be an economical alternative to bridge replacement.