ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: SP-339-09: Assessment of a 12-Story Reinforced Concrete Special Moment Frame Building Using Performance-Based Seismic Engineering Standards and Guidelines: ASCE 41, TBI, and LATBSDC

Author(s): Mustafa K. Buniya, Andre R. Barbosa, and Siamak Sattar

Publication: Symposium Paper

Volume: 339

Issue:

Appears on pages(s): 134-154

Keywords: ASCE/SEI 41, LATBSDC, nonlinear modeling, performance-based design, reinforced concrete, special moment frame, TBI

DOI: 10.14359/51724700

Date: 3/1/2020

Abstract:
A 160-foot (≈ 49 m) tall 12–story reinforced concrete special moment frame building is designed following ASCE 7-16 and ACI 318-14, and assessed using three Performance-Based Seismic Engineering (PBSE) standards and guidelines including ASCE/SEI 41, the Tall Buildings Initiative (TBI) guidelines for performance-based design of tall buildings, and the Los Angeles Tall Buildings Structural Design Council (LATBSDC) procedures. The assessments are performed at the combination of two performance and hazard levels including Collapse Prevention (CP) at the risk-targeted maximum considered earthquake (MCER) hazard level and Immediate Occupancy (IO) at a frequent ground motion level with 50 percent probability of exceedance in 30 years, i.e. serviceability performance level. Based on the recommendations of each of the three PBSE documents, nonlinear finite element models are implemented in OpenSees. Through nonlinear time-history response analyses, the finite element models are subjected to eleven ground motions that are selected following the ground motion selection recommendations in ASCE 7-16. Assessment results indicate that for the serviceability performance level, the code-compliant building meets the design requirements of the three PBSE documents for the inter-story drift ratio and inelastic deformation of the structural components. At the MCER hazard level, although the building essentially satisfies the design requirements for the peak inter-story drift ratios and inelastic deformation, the mean of the residual inter-story drift ratios as well as the envelope of the residual drift ratios do not meet the limits of the TBI and LATBSDC guidelines. The results indicate that the newly designed building meets the ASCE 41 acceptance criteria but does not meet the design requirements set in TBI and LATBSDC guidelines.