Mechanical Performance of Concrete Incorporating Slender Elements from Recycling GFRP Waste

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Mechanical Performance of Concrete Incorporating Slender Elements from Recycling GFRP Waste

Author(s): Yuan Tian and Ardavan Yazdanbakhsh

Publication: Special Publication

Volume: 334

Issue:

Appears on pages(s): 1-12

Keywords: Concrete, Discrete reinforcement, GFRP waste, Mechanical performance, Recycled composites

Date: 9/30/2019

Abstract:
Due to their unique mechanical characteristics, glass fiber reinforced polymer (GFRP) composite materials are difficult to recycle at the end of their service lives. In the present work, a specific approach of recycling GFRP waste for use in concrete is investigated. Scrap from GFRP rebar and waste from a GFRP wind turbine blade shell were processed into slender elements, referred to as “needles,” with a length of 100 mm and used in concrete to replace 5% and 10% of natural coarse aggregate. The results of testing various concrete specimens revealed that the incorporation of needles with longitudinally aligned glass fibers increased the splitting tensile strength of concrete significantly. Both types of recycled needles, regardless of the source of waste and orientation of glass fibers, increased the tensile toughness of concrete significantly. In addition, it was observed that incorporating needles did not reduce concrete’s slump, due to the relatively high specific surface area of the needles. The findings suggest that recycling GFRP waste into needles as concrete reinforcement may be a viable GFRP waste management strategy and deserves further research.