Effect of Temperature on Pore Structure and Strength of Concrete

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Effect of Temperature on Pore Structure and Strength of Concrete

Author(s): Jiarong Shen, Qianjun Xu, and Qingbin Li

Publication: Materials Journal

Volume: 117

Issue: 1

Appears on pages(s): 85-95

Keywords: compressive strength; mercury intrusion porosity; N2 adsorption; pore structure; scanning electron microscope; thermal treatment

Date: 1/1/2020

Abstract:
The aim of this study is to quantitatively determine the effect of elevated temperatures on the pore structure and compressive strength of concrete. To minimize the effect of the hydration process, thermal and endogenous shrinkage, concrete cured in water for 12 months was tested. Evolutions of pore structure under elevated temperatures (40, 105, 150, 200, and 250°C [104, 221, 302, 392, and 482°F]) were characterized by mercury intrusion porosimetry (MIP), N2 adsorption, and scanning electron microscope (SEM) tests. Compressive strength tests were carried out to characterize the mechanical properties. The experimental results showed that with the increase of temperature, the porosity increased and the pore structure destroyed gradually. The changes in porosity and pore structure can be explained by the loss of water in concrete. In addition, the compressive strength decreased with increasing temperature. The relationship between compressive strength and porosity after heating at elevated temperatures fitted well with the strength-porosity logarithmic relation proposed by Schiller. The correlation coefficient is 0.994, which indicated that the effect of elevated temperature on the compressive strength of concrete can be quantitatively determined by Schiller function.




  

Please enter this 5 digit unlock code on the web page.