Thermal Detection of Subsurface Delaminations in Reinforced Concrete Bridge Decks Using Unmanned Aerial Vehicle

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Thermal Detection of Subsurface Delaminations in Reinforced Concrete Bridge Decks Using Unmanned Aerial Vehicle

Author(s): Tarek Omar and Moncef L. Nehdi

Publication: Special Publication

Volume: 331

Issue:

Appears on pages(s): 1-14

Keywords: bridge deck, condition assessment, delamination, infrared, thermal image, unmanned aerial vehicle

Date: 2/1/2019

Abstract:
Bridge deck condition assessment is commonly conducted through visual inspection by bridge inspectors. Considering the colossal backlog of aging bridge structures, there is a need to develop cost-effective and innovative solutions to evaluate bridge deck conditions on regular time intervals, without interrupting traffic. This makes remote sensing technologies viable options in the field of bridge inspection. This paper explores the potential for applying infrared thermography (IRT) using unmanned aerial vehicle (UAV) to detect and quantify subsurface delaminations in concrete bridge decks. The UAV-borne thermal sensing system focuses on acquiring thermal imagery using a UAV and extracting information from the image data. Two in-service concrete bridge decks were inspected using a high resolution thermal camera mounted on a UAV. The captured images were then enhanced and stitched together using a tailored procedure to produce a mosaic view of the entire bridge deck, indicating the size and geometry of the detected delaminated areas. The results were validated by conducting hammer sounding and half-cell potential testing on the same bridge decks. The findings reveal the capability of the technology to provide measurements comparable to those derived from traditional hands-on inspection methods. Thus, it can be an excellent aid in efficient bridge maintenance and repair decision-making.