ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Out-of-Plane Flexural Behavior of Reinforced Masonry Walls Strengthened with Near-Surface-Mounted Fiber- Reinforced Polymer

Author(s): Zuhair Al-Jaberi, John J. Myers, and Mohamed A. ElGawady

Publication: Structural Journal

Volume: 115

Issue: 4

Appears on pages(s): 997-1010

Keywords: cyclic load; fiber-reinforced polymer; masonry walls; nearsurface- mounted; out-of-plane; strengthening

DOI: 10.14359/51702227

Date: 7/1/2018

Abstract:
Eighteen reinforced masonry walls were built as a part of this study. These reinforced walls were strengthened with carbon fiber reinforced polymer (FRP) bars and strips and glass FRP bars using a near-surface-mounted (NSM) technique; different mild steel reinforcement ratios (ρ) were used. These simply supported walls were tested under an out-of-plane cyclic load that was applied along two line loads. Various parameters were investigated, including those related to FRP (type and amount), bond pattern (stack and running), mortar pattern (face shell bedding and fully bedding), embedding material (epoxy and cementitious paste), amount of internal steel reinforcement, existence of compression FRP bars, and groove size. The ultimate load, deflection at ultimate load, and mode of failure were investigated in this study. The test results indicated a significant increase in stiffness and flexural capacity of out-of-plane reinforced walls strengthened with FRP compared to the unstrengthened reinforced walls. Different modes of failure occurred in the strengthened reinforced walls, including flexure-shear failure through the concrete block, as well as debonding of FRP reinforcement from the masonry substrate. Furthermore, a simple analytical model for computing the moment capacity of strengthened reinforced masonry walls is proposed and compared with the experimental results.