Field Performance of Portland Cement Pervious Concrete Pavement in Cold Weather Climates

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Field Performance of Portland Cement Pervious Concrete Pavement in Cold Weather Climates

Author(s): Norbert Delatte

Publication: Symposium Paper

Volume: 282

Issue:

Appears on pages(s): 1-16

Keywords: compressive strength, hydraulic conductivity, nondestructive testing, pervious concrete, ultrasonic pulse velocity, void ratio

Date: 12/27/2011

Abstract:
Portland Cement Pervious Concrete (PCPC) is a material of increasing interest for parking lots and other applications. PCPC typically consists of coarse aggregates, portland cement, water, and various admixtures. In this research, in-service PCPC pavements were inspected in the field, and cores were removed in order to investigate properties in the laboratory. Field evaluation methods included visual inspection, two surface drainage measurements, and indirect transmission ultrasonic pulse velocity (UPV). Laboratory testing methods included void ratio, unit weight, compressive strength, splitting tensile strength, hydraulic conductivity, and direct transmission UPV. Because it is compacted on the surface with screeds or rollers, PCPC generally has higher strength, lower void ratio, and lower hydraulic conductivity at the surface than at the bottom. Therefore, the properties of the tops and bottoms of core samples were compared. Generally, the PCPC installations evaluated under this research project have performed well in freeze-thaw environments with little maintenance required. No visual indicators of freeze-thaw damage were observed. With the exception of some installations where the pore structure was sealed during construction with wet mixtures or over compaction, nearly all sites showed fair to good infiltration capability based on drain time measurements.




  

Please enter this 5 digit unlock code on the web page.