ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Stress-Release Rate Model for Measuring Working Stress in Concrete

Author(s): Zhao-Dong Xu, Yi Zhang, Jin-Bao Li, and Chang-Qing Miao

Publication: Materials Journal

Volume: 121

Issue: 4

Appears on pages(s): 51-60

Keywords: multi-step slotting method; numerical analysis; stress measurement; stress-release rate model; working stress

DOI: 10.14359/51740782

Date: 8/1/2024

Abstract:
Accurately measuring the working stress of concrete through the stress-release method is a crucial foundation for assessing the operational condition of building structures and formulating maintenance and reinforcement strategies. The slotting method, employed within the stress-release technique, not only addresses the limitations associated with the core-drilling and hole-drilling methods, but also offers a practical solution for engineering detection. This paper presents a novel multi-step slotting method employing a stress-release rate model as its foundation. The fundamental equations governing space-related issues are introduced, and a theoretical model of the stress-release rate is derived. By employing a multi-step slotting process instead of the conventional one-step slotting approach, the limitations of the traditional drilling method are overcome. The stress-release rate model is calibrated using numerical simulation outcomes, followed by both numerical simulation and experimental verification. With a relative error of 3.5% between theoretical and simulated values, and 9.4% with experimental values after excluding the initial slotting data, it is evident that the stress-release rate model demonstrates notable accuracy and applicability. This reaffirms the effectiveness and convenience of the multi-step slotting method for measuring concrete working stress.