• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Abrasion Resistance of Concrete with Different Mixture Compositions at Cold Curing Temperatures

Author(s): Sara Seyedfarizani, Basem H. AbdelAleem, and Assem A. A. Hassan

Publication: Materials Journal

Volume: 119

Issue: 3

Appears on pages(s): 235-246

Keywords: abrasion resistance; cold curing conditions; fiber-reinforced concrete; mechanical properties; supplementary cementitious materials (SCMs)

Date: 5/1/2022

This study aimed to investigate the effect of different curing conditions/temperatures on the compressive strength, flexural strength (FS), modulus of elasticity (ME), and abrasion resistance of concrete developed with different mixture compositions. The studied parameters included different water-binder ratios (w/b) (0.4 and 0.55), different coarse-to-fine aggregate ratios (C/F) (0.7 and 1.2), addition of steel fibers (SFs), and different supplementary cementitious materials (SCMs) (metakaolin [MK] and silica fume [SLF]). The developed mixtures were cured at four different curing conditions: moist curing (C1); air curing (C2); and cold curing, including +5°C curing (C3) and –10°C curing conditions (C4). The results indicated that the effect of curing concrete samples at cold curing conditions was more pronounced on FS results compared to all other mechanical properties results, in which the FS reduced by 23% and 41% at +5°C and –10°C curing conditions, respectively, compared to at the moist-curing condition. Despite the considerable enhancement in the mechanical properties and abrasion resistance when SFs or SCMs were used in the mixtures, cold curing of mixtures with SCMs or SFs significantly reduced this enhancement. The results also revealed that the rotating-cutter test results of the mixture with SFs were more affected by cold curing conditions than the sandblasting test results.


Electronic Materials Journal


Please enter this 5 digit unlock code on the web page.