Sliding in Compression Zones of Reinforced Concrete Shear Walls: Behavior and Modeling


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Sliding in Compression Zones of Reinforced Concrete Shear Walls: Behavior and Modeling

Author(s): Burkhart Trost, Harald Schuler, and Božidar Stojadinovic

Publication: Structural Journal

Volume: 116

Issue: 5

Appears on pages(s): 3-16

Keywords: aggregate interlock; compression zone; flexure-shear-sliding interaction; reinforced concrete walls; sliding

Date: 9/1/2019

A new sliding model is developed to predict the shear stress-sliding deformation relationship in the compression zone of a reinforced concrete shear wall. The model considers the reinforcement ratio, the reinforcement bar diameter, the concrete mixture, and the flexure-induced crack width to calculate the shear stress transfer across a crack. The results of the model match the responses of 13 compact sliding tests, which represent the compression zone of a concrete shear wall. The specimens were initially precracked and loaded in a bidirectional test setup up to sliding displacements of 50 mm (1.97 in.). The results show that the size of a flexure-induced crack has a major impact on the sliding behavior. The sliding resistance depends primarily on the aggregate interlock effect and its damage. Remarkably, the amount of reinforcement crossing the crack does not affect the peak sliding resistance significantly, but it affects the sliding shear stress-deformation behavior, as observed in the experiments.


Please enter this 5 digit unlock code on the web page.