Low-Elevation Impact Tests of Axially Loaded Reinforced Concrete Columns

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Low-Elevation Impact Tests of Axially Loaded Reinforced Concrete Columns

Author(s): Tuba Gurbuz, Alper Ilki, David P. Thambiratnam, and Nimal Perera

Publication: Structural Journal

Volume: 116

Issue: 1

Appears on pages(s): 117-128

Keywords: column; drop weight impact; dynamic behavior; impact capacity; impact load; impact test; reinforced concrete; shear failure; vehicular impact

Date: 1/1/2019

Abstract:
Conventionally, structures are designed to resist dead and live loads. However, there is a rising risk of structural members being subjected to impact loads as a result of unexpected events, accidents, or intentional attacks. In the case of frontal street-level columns of buildings and columns in parking spaces, they can potentially be exposed to high-intensity dynamic loads caused by vehicular impacts. Furthermore, most of these columns are not designed to resist these effects. This research demonstrates the vulnerability of conventionally designed reinforced concrete (RC) columns against vehicle impacts. A special drop-weight test setup was designed and established to simulate the vehicle collision impact in the performed tests. In the scope of this study, four fullscale axially loaded RC members were tested under drop-weight test setups to represent low-elevation transverse impact loads on the specimens. The performance of RC columns under static and impact loading conditions (applied by increased magnitude of impact energy) was examined and the changes in their structural performances were evaluated. The mode of failure was observed to be transformed from pure flexure in static tests into a more brittle character dominated by shear under impact loading conditions. Consequently, conventionally designed RC columns were found highly shear-deficient against vehicular impacts; therefore, they should be designed with a certain safety margin to have reserve shear and deformation capacities to eliminate their vulnerability. Based on the test results, dynamic response ratio recommended for shear-critical RC members can be used in the design of street-level columns against vehicular impact.