Title:
Tensile Strength and Durability Performance of Cement-Based FRP Composite Wrapped Specimens
Author(s):
H. A. Toutanji
Publication:
Symposium Paper
Volume:
193
Issue:
Appears on pages(s):
1075-1089
Keywords:
concrete; concrete (fiber-reinforced); durability; strength
DOI:
10.14359/9975
Date:
8/1/2000
Abstract:
Fiber reinforced polymer composite (FRPC) wraps are increasingly being used for rehabilitation and strengthening of concrete structures This paper presents the results of an experimental study on the tensile performance of cement-based specimens wrapped with FRPC sheets subjected to wet-dry and freeze-thaw cycles. The tensile strength values were evaluated using the ASCERA hydraulic tensile tester. This simple testing technique provides a uniform stress distribution throughout the specimen, thus minimizing eccentricity and gripping effects, which can be of a significant source of error. Cement-based specimens were wrapped with three different types of FRP tow sheets: two carbon and one glass. Test variables included the type of fiber (Cl, C5, and GE) and the environmental exposure conditions. The specimens were conditioned in three different environments, as follows: a) room temperature (23C), b) 300 wet-dry cycles using salt water and c) 300 freeze/thaw cycles. At the end of each exposure, ultimate strength and load-extension behavior were obtained and then compared to the performance of unconditioned samples. Results show that specimens wrapped with carbon fiber reinforced polymer (CFRP) experienced no reduction in strength due to exposure, whereas specimens with glass fiber reinforced polymer (GFRP) experienced a significant reduction in strength. Fractography was used to identify the failure initiating flaw and failure mode for the fractured tensile specimens.