Title:
Role of Supplementary Cementitious Materials in Bacteria-Based Self-Healing Concrete (Prepublished)
Author(s):
Goli Nossoni and Daniel Hussey
Publication:
Materials Journal
Volume:
Issue:
Appears on pages(s):
Keywords:
bacteria encapsulation, crack width, fly ash content, self-healing concrete
DOI:
10.14359/51749499
Date:
1/21/2026
Abstract:
This study evaluated the effect of class F fly ash (5, 10, 15, and 20%) and silica fume (20%) as partial cement replacements on bacterial crack healing. Concrete cylinders were prepared, cracked into one-inch disks, and submerged in fresh water. Healing progress was monitored over 18 weeks using microscopy and quantified through a healing index. Results showed that bacterial activity substantially improved healing compared to natural hydration in control specimens. Fly ash replacement did not prevent healing, and several disks across all percentages achieved complete crack closure. However, higher fly ash levels shortened the duration of bacterial activity, indicating sensitivity to calcium availability. At 20% fly ash, healing progressed more slowly but remained active at 18 weeks. In contrast, specimens containing 20% silica exhibited significantly lower healing efficiency, with few disks achieving full closure and overall lower healing indices. These results confirm that bacteria-based self-healing concrete remains effective with fly ash but is constrained by high silica fume content due to very low to zero calcium content in silica fume. The findings indicated that lower calcium content in supplementary cementitious material (SCM) replacement, either due to higher fly ash content with lower calcium compared to OPC or with silica fume with almost zero calcium content, with bacteria, may have a significant effect on the healing progress.