Title:
Lap Splice Tests of 600 MPa Reinforcing Bars for Slag-Based Concrete (Prepublished)
Author(s):
Kyu Park, Hong-Gun Park
Publication:
Structural Journal
Volume:
Issue:
Appears on pages(s):
Keywords:
bond strength; high-strength reinforcing bar; lap splice test; slag-based concrete; zero-cement concrete
DOI:
10.14359/51749497
Date:
1/21/2026
Abstract:
A slag-based zero-cement concrete (ZC) was newly developed as an alternative, eco-friendly material to Portland cement concrete. To investigate the bond performance between ZC and steel reinforcing bars, lap splice tests were conducted for ZC beams. Fourteen beams (two cementitious normal concrete (NC) beams and twelve ZC beams) were tested at the ages of 6 days (45 MPa (6.53 ksi)) and 28 days (60 MPa (8.7 ksi)). For steel reinforcement, Grade 600 MPa (87.0 ksi) reinforcing bars were used. The test parameters included the concrete type, concrete strength (i.e., concrete age), reinforcing bar diameter, concrete cover thickness, ratio of actual lap splice length to required lap splice length, and use of stirrups. The test results showed that the performance of ZC beams was comparable to that of the counterpart NC beams in terms of moment–deflection relationship, damage mode, and reinforcing bar stress at the peak load. This result indicates that the bond performance of ZC was equivalent to that of NC with identical compressive strength. The bar development length specified in current design codes safely predicted the reinforcing bar stress of the ZC beams at failure: current design codes are applicable to the reinforcing bar development length design of ZC members.