Nominal Flexural Strength of Concrete Members Prestressed with Hybrid Tendons (Prepublished)

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Nominal Flexural Strength of Concrete Members Prestressed with Hybrid Tendons (Prepublished)

Author(s): Nominal Flexural Strength of Concrete Members Prestressed with Hybrid Tendons

Publication: Structural Journal

Volume:

Issue:

Appears on pages(s):

Keywords: CFRP; flexural strength; hybrid tendons; prestressed concrete; ultimate stress; unbonded tendons

DOI: 10.14359/51749494

Date: 1/21/2026

Abstract:
The calculation of the nominal flexural strength of concrete members prestressed with hybrid (i.e., a combination of bonded and unbonded (steel and/or carbon fiber reinforced polymer (CFRP)) tendons is dependent on determining the stress in the unbonded prestressed reinforcement. Current provisions in the ACI CODE-318-25 are only applicable to members with either unbonded or bonded steel tendons. Additionally, while ACI PRC-440.4R-04 is adopted for unbonded CFRP tendons, neither ACI provisions address the use of hybrid tendons. This paper presents a closed-form analytical solution for the stress at ultimate derived based on the Modified Deformation-Based Approach (MDBA) that is applicable to beams prestressed with unbonded, hybrid (steel or FRP), external with deviators or internal tendons, with and without non-prestressed reinforcement. An assessment of its accuracy and applicability in calculating the nominal flexural strength is examined using a large database of 330 beams and slabs (prestressed with steel and/or CFRP tendons) compiled from test results by the authors as well as those available in the literature. Results predicted by the proposed approach exhibited excellent accuracy when compared to those predicted using ACI CODE-318 or ACI PRC-440 stress equations. They also show that the approach is universally applicable to any combination of bonded and/or unbonded (steel and/or CFRP) tendons, span-to-depth ratio, as well as loading applications.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer