Mechanical Damage and Self-healing on High Temperature Exposed UHPC

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Mechanical Damage and Self-healing on High Temperature Exposed UHPC

Author(s): Liberato Ferrara

Publication: Web Session

Volume: ws_F25_MechanicalDamage-Ferrara.pdf

Issue:

Appears on pages(s):

Keywords:

DOI:

Date: 10/26/2025

Abstract:
Mechanical properties of Ultra High-Performance Concrete (UHPC) degrade when exposed to elevated temperatures, even more than ordinary concretes due to its dense microstructure. Concerning, in particular, the special application of nuclear power plants, in which UHPC can find a promising use, concrete can be subjected to moderately high temperature (usually lower than 400°C) along the working life, this making of interest the study on the influence and persistence of UHPC's innate self-healing capabilities over the thermal degradation. In this context, the paper focuses on an experimental study of UHPC recovery ability by autogenous self-healing after being exposed to high temperatures. The UHPC specimens have been made with hybrid fibres, that is, polypropylene and steel fibres, and have been pre-cracked up to a cumulative crack width of 0.3 mm under 4-point flexural test. The pre-cracked specimens have been exposed to a temperature of 200 °C or 400 °C, with an heating rate of 1 °C / minute from room temperature and kept at the target temperature for two hours, with a following slow cooling at a rate of <1 °C / minute. The specimens have been kept in the lab environment for 24 hours after reaching room temperature. Then they have been tested for residual flexural capacity or allowed to self-heal under water immersion for six months. The damage and healing evolution have been monitored periodically using ultra-sonic pulse velocity survey and digital microscope inspection. Nevertheless, the thermal degradation, during the healing period, UHPC showed a significant recovery in terms of strength assessed by ultra-sonic pulse velocity tests.