Application of Eco-Friendly Materials in Repair of RC Members: A State-of-the-Art Review (Prepublished)

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Application of Eco-Friendly Materials in Repair of RC Members: A State-of-the-Art Review (Prepublished)

Author(s): Matthew Soltani and Christopher Weilbaker

Publication: Structural Journal

Volume:

Issue:

Appears on pages(s):

Keywords: circular economy; corrosion resistance; durability; geopolymer technology; mechanical properties; structural retrofitting; sustainable construction

DOI: 10.14359/51749170

Date: 9/11/2025

Abstract:
This study presents a comprehensive review of eco-friendly materials and advanced repair techniques for rehabilitating reinforced-concrete (RC) structures, emphasizing their role in promoting sustainability and enhancing performance. By evaluating fifty-five research programs conducted between 2001 and 2024, the study focuses on emerging materials such as geopolymers, natural fibers, and fiber-reinforced composites, highlighting their mechanical properties, environmental benefits, and potential for integration into traditional RC systems. The review is thematically organized into four areas: (1) Sustainability and Environmental Impacts, (2) Material Innovation and Properties, (3) Repair Techniques and Efficiency, and (4) Structural Performance. Key findings reveal that these materials not only reduce the carbon footprint of construction but also significantly improve structural durability, corrosion resistance, and long-term performance under varying environmental conditions. Specifically, geopolymer concretes exhibit low CO₂ emissions and superior bond strength; bamboo and flax fibers offer strong tensile capacity with renewable sourcing; and MICP techniques deliver self-healing functionality that reduces dependency on chemical-based crack sealants. Additionally, the use of recycled and bio-based materials further contributes to cost-efficiency and environmental resilience, fostering circular economy principles. By synthesizing findings across these domains, this study provides practical insights into how eco-friendly materials can simultaneously address environmental, structural, and economic challenges in RC repair. The study underscores the importance of adopting innovative repair methods that incorporate these sustainable materials to address modern civil engineering challenges, balancing infrastructure longevity, sustainability, and reduced environmental impact.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer