Title:
Relative Emulation Evaluation of Precast Concrete Shear Walls (Prepublished)
Author(s):
Chae-Rim Im, Ju-Hyun Mun, Keun-Hyeok Yang, Sanghee Kim, Yeon-Back Jung, and Dong-Eun Lee
Publication:
Structural Journal
Volume:
Issue:
Appears on pages(s):
Keywords:
bolting technique; ductility; lightweight aggregate concrete; precast concrete shear wall; relative emulation evaluation
DOI:
10.14359/51749097
Date:
7/31/2025
Abstract:
This study investigated the flexural behavior and seismic connection performance of precast lightweight aggregate concrete shear walls (PLCWs) using the relative emulation evaluation procedure specified in the Architectural Institute of Japan (AIJ). Six PLCW specimens connected through a bolting technique were prepared and tested under constant axial and cyclic lateral loads. In addition, three companion shear walls connected through the most commonly used spliced sleeve technique for precast concrete members were prepared to confirm the effectiveness of the bolting technique for the seismic connection performance. The main parameters were the concrete type (all-lightweight aggregate (ALWAC), sand-lightweight aggregate (SLWAC), and normal-weight concrete (NWC), the compressive strength of the concrete, and the connection technique. The test results showed that none of the specimens connected through the conventional spliced sleeve technique reached the allowable design drift ratio specified by the AIJ, indicating that the spliced sleeve is an unfavorable technique for obtaining a seismic connection performance of PLCWs equivalent to that of cast-in-place reinforced concrete shear walls. However, the specimens made of ALWAC or NWC and connected through the bolting technique not only reached the allowable design drift ratio specified by the AIJ but also satisfied the requirements of the seismic connection performance (lateral loads and allowable error at yield displacement) within the allowable design drift ratio. Consequently, the displacement ductility ratio of the specimens connected through the bolting technique was 1.52 times higher than that of the specimens connected through the conventional spliced sleeve technique, respectively. This difference was more prominent in the specimens made of ALWAC than in those made of SLWAC or NWC. Thus, the use of the bolting technique as a wall-to-base connection in shear walls can effectively achieve a seismic connection performance equivalent to that of cast-in-place shear walls while maintaining the medium ductility grades.