Model for Shear Stress of Steel Fiber-Reinforced Concrete Beams with Stirrups

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Model for Shear Stress of Steel Fiber-Reinforced Concrete Beams with Stirrups

Author(s): Elielson Oliveira de Sousa and Dênio Ramam Carvalho de Oliveira

Publication: Structural Journal

Volume: 123

Issue: 1

Appears on pages(s): 47-60

Keywords: beam; shear; steel fibers; stirrups

DOI: 10.14359/51748927

Date: 1/1/2026

Abstract:
Reasoned on statistical analysis, this paper discusses a theoretical model for determining shear strength in steel fiber-reinforced concrete (SFRC) beams with transverse reinforcement, using the univariate nonlinear regression of a database consisting of 100 SFRC beams with stirrups, which were analyzed and tested experimentally to shear failure. The proposed model was applied to another database with 150 SFRC beams with transverse reinforcement, which also experienced shear failure. To check whether the model works for ultimate shear stresses, the effectiveness of the proposed equation was measured by statistically comparing the accuracy of the shear stress values obtained through the model with those acquired through the standard equations, and with the experimental values for stress present in the database. These comparisons between the theoretical and experimental results demonstrate that the developed expression efficiently predicts the shear strength of SFRC beams.

Related References:

Abdul-Zaher, A. S.; Abdul-Hafez, L. M.; Tawfic, Y. R.; and Hammed, O., 2016, “Shear Behavior of Fiber Reinforced Concrete Beams,” Journal of Engineering Sciences, V. 44, No. 2, Mar. , pp. 132-144.

Abduljabar, H. T., and Abbas, R. F., 2022, “Shear Behavior of Fibrous Reinforced Concrete Wide Beams,” Journal of Engineering and Sustainable Development, V. 26, No. 2, Mar., pp. 77-93. doi: 10.31272/jeasd.26.2.8

Adam, M.; Said, M.; and Elrakib, T., 2016, “Shear Performance of Fiber Reinforced Self-Compacting Concrete Deep Beams,” International Journal of Civil Engineering and Technology, V. 7, No. 1, Jan.-Feb., pp. 25-46.

Algassem, O.; Li, Y.; and Aoude, H., 2019, “Ability of Steel Fibers to Enhance the Shear and Flexural Behavior of High-Strength Concrete Beams Subjected to Blast Load,” Engineering Structures, V. 199, pp. 1-23. doi: 10.1016/j.engstruct.2019.109611

Amin, A., and Foster, J., 2016, “Shear Strength of Steel Fibre Reinforced Concrete Beams with Stirrups,” Engineering Structures, V. 111, pp. 323-332. doi: 10.1016/j.engstruct.2015.12.026

Aoude, H.; Belghiti, M.; Cook, W. D.; and Mitchell, D., 2012, “Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups,” ACI Structural Journal, V. 109, No. 3, May-June, pp. 359-367.

Araújo, D. L.; Nunes, F. G. T.; Toledo Filho, R. D.; and Andrade, M. A. S., 2014, “Shear Strength of Steel Fiber-Reinforced Concrete Beams,” Acta Scientiarum Technology, V. 36, No. 3, pp. 389-397. doi: 10.4025/actascitechnol.v36i3.19005

Barros, J. A. O., and Figueiras, J. A., 1999, “Flexural Behavior of SFRC: Testing and Modeling,” Journal of Materials in Civil Engineering, ASCE, V. 11, No. 4, pp. 331-339. doi: 10.1061/(ASCE)0899-1561(1999)11:4(331)

Beygi, M. H. A.; Amiri, J. V.; Moazen, A.; Malidareh, N.; and Mazandarano, M., 2008, “The Investigation of Effect of Steel Fiber on the Shear Behavior of Self-Compacting Concrete Beams with Normal and High Strength,” Proceedings of Conference on our World in Concrete & Structures, Singapore.

Biolzi, L., and Cattaneo, S., 2017, “Response of Steel Fiber Reinforced High Strength Concrete Beams: Experiments and Code Predictions,” Cement and Concrete Composites, V. 77, Dec., pp. 1-13. doi: 10.1016/j.cemconcomp.2016.12.002

Campione, G.; Mendola, L. L.; and Zingone, G., 1999, “Shear Resistant Mechanisms of High Strength Fibre Reinforced Concrete Beams,” Transactions on the Built Environment, V. 38, pp. 23-32.

CEB-FIP Model Code 2020, 2023, Fédération Internationale du Béton, V. 1, May.

Chen, B.; Zhou, J.; Zhang, D.; Su, J.; Nuti, C.; and Sennah, K., 2022, “Experimental Study on Shear Performances of Ultra-High Performance Concrete Deep Beams,” Structures, V. 39, pp. 310-322. doi: 10.1016/j.istruc.2022.03.019

Collins, M. P., 2001, “Evaluation of Shear Design Procedures for Concrete Structures,” CSA Technical Committee on Reinforced Concrete Design, pp. 29-37.

Cucchiara, C.; La Mendola, L.; and Papia, M., 2004, “Effectiveness of Stirrups and Steel Fibres as Shear Reinforcement,” Cement and Concrete Composites, V. 26, No. 7, pp. 777-786. doi: 10.1016/j.cemconcomp.2003.07.001

Dancygier, A. N., and Savir, Z., 2011, “Effects of Steel Fibers on Shear Behavior of High-Strength Reinforced Concrete Beams,” Advances in Structural Engineering, V. 14, No. 5, pp. 745-761. doi: 10.1260/1369-4332.14.5.745

Dang, T. D.; Tran, D. T.; Nguyen-Minh, L.; and Nassif, A. Y., 2021, “Shear Resistant Capacity of Steel Fibres Reinforced Concrete Deep Beams: An Experimental Investigation and a New Prediction Model,” Structures, V. 33, Oct., pp. 2284-2300. doi: 10.1016/j.istruc.2021.05.091

De Sousa, E. O., 2020, “Aplicando concreto de elevada resistência reforçado com fibras de aço na supressão do reforço convencional de vigas em concreto armado de resistência normal,” dissertação de mestrado, Instituto de Tecnologia, Universidade Federal do Pará, Belém, Pará, Brasil.

Ding, Y., 2011, “Investigations Into the Relationship between Deflection and Crack Mouth Opening Displacement of SFRC Beam,” Construction and Building Materials, V. 25, No. 5, pp. 2432-2440. doi: 10.1016/j.conbuildmat.2010.11.055

Ding, Y.; Liu, H.; Ning, X.; Zhang, Y.; and Azevedo, C., 2014, “Shear Resistance and Cracking Behaviour of SFRC Beams with and without Axial Load,” Magazine of Concrete Research, V. 66, No. 23, pp. 1183-1193. doi: 10.1680/macr.14.00043

Do-Dai, T.; Tran, D.; and Nguyen-Minh, L., 2021, “Effect of Fiber Amount and Stirrup Ratio on Shear Resistance of Steel Fiber Reinforced Concrete Deep Beams,” Journal of Science and Technology in Civil Engineering, V. 15, No. 3, pp. 1-13. doi: 10.31814/stce.nuce2021-15(2)-01

EN 14651, 2007, “Test Method for Metallic Fiber Concrete - Measuring the Flexural Tensile Strength (Limit of Proportionality - LOP, Residual),” European Committee for Standardization, Brussels, Belgium.

Furlan, S. Jr., and de Hanai, J. B., 1997, “Shear Behaviour of Fiber Reinforced Concrete Beams,” Cement and Concrete Composites, V. 19, No. 4, pp. 359-366. doi: 10.1016/S0958-9465(97)00031-0

Gomes, J. G., 2013, “Influência das Fibras Metálicas no Comportamento ao Esforço Transverso de Vigas SFRC,” dissertação de mestrado, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.

Gomes, L. D. S., 2016, “Análise experimental da eficiência das fibras de aço no reforço ao cisalhamento de vigas em concreto armado,” dissertação de mestrado, Instituto de Tecnologia, Universidade Federal do Pará, Belém, Pará, Brazil.

Hemstapat, N.; Okubo, K.; and Niwa, J., 2020, “Prediction of Shear Capacity of Slender Reinforced Concrete Beam with Steel Fiber,” Journal of Advanced Concrete Technology, V. 18, No. 4, pp. 179-191. doi: 10.3151/jact.18.179

Hwang, J.-H.; Lee, D. H.; Ju, H.; Kim, K. S.; Seo, S.-Y.; and Kang, J.-W., 2013, “Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches,” Materials, V. 6, No. 10, pp. 4847-4867. doi: 10.3390/ma6104847

Jongvivatsakul, P.; Watanabe, K.; and Matsumoto, K., 2011, “Evaluation of Shear Carried by Steel Fibers of Reinforced Concrete Beams Using Tension Softening Curves,” Journal of Japan Society of Civil Engineers Ser E2 (Materials and Concrete Structures), V. 67, No. 4, Jan., pp. 493-507. doi: 10.2208/jscejmcs.67.49310.2208/jscejmcs.67.493

Juárez Alvarado, C. A.; Mendoza-Rangel, J. M.; Terán-Torres, B. T.; Valdez-Tamez, P. L.; and Castruita-Velázquez, G., 2021, “Comportamiento teórico-experimental de fibras de acero como reemplazo parcial del refuerzo a cortante en vigas de concreto reforzado,” Revista ALCONPAT, V. 11, No. 3, pp. 31-49. doi: 10.21041/ra.v11i3.548

Juárez, C.; Valdez, P.; Durán, A.; Sobolev, K., 2006, “The Diagonal Tension Behavior of Fiber Reinforced Concrete Beams,” Cement and Concrete Composites, V. 29, Jan., pp. 402-408.

Kal, K. W.; Kim, K. S.; Lee, D.; and Hwang, J. H., 2010, “Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams,” Journal of the Korea Institute for Structural Maintenance Inspection, V. 14, No. 3, Jan., pp. 160-170.

Kannam, P.; Sarella, R. V.; and Pancharathi, R. K., 2018, “Hybrid Effects of Stirrups Ratio and Steel Fibers on Shear Behavior of Self-Compacting Concrete,” Archives of Civil Engineering, V. 64, No. 1, pp. 145-169. doi: 10.2478/ace-2018-0010

Kazemi, M. T.; Golsorkhtabar, H.; Beygi, M. H. A.; and Gholamitabar, M., 2017, “Fracture Properties of Steel Fiber Reinforced High Strength Concrete Using Work of Fracture and Size Effect Methods,” Construction and Building Materials, V. 142, Mar., pp. 482-489. doi: 10.1016/j.conbuildmat.2017.03.089

Khuntia M.; Stojadinovic B.; Goel S. C., 1999, “Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams without Stirrups,” ACI Structural Journal, V. 96, No. 2, Mar.-Apr., pp. 282-289.

Kim, C.-G.; Lee, H.; Park, H.-G.; Hong, G.-H.; and Kang, S.-M., 2017, “Effect of Steel Fibers on Minimum Shear Reinforcement of High-Strength Concrete Beams,” ACI Structural Journal, V. 114, No. 5, Sept.-Oct., pp. 1109-1119. doi: 10.14359/51689782

Kim, C.-G.; Park, H.-G.; Hong, G.-H.; and Kang, S.-M., 2015, “Evaluation on Shear Contribution of Steel Fiber Reinforced Concrete in Place of Minimum Shear Reinforcement,” Journal of the Korea Concrete Institute, V. 27, No. 6, pp. 603-613. doi: 10.4334/JKCI.2015.27.6.603

Kim, C.-G.; Park, H.-G.; and Kang, S.-M., 2019, “Shear Strength of Composite Beams with Steel Fiber-Reinforced Concrete,” ACI Structural Journal, V. 116, No. 6, Nov., pp. 5-16. doi: 10.14359/51716812

Krassowska, J., and Kosior-Kazberuk, M., 2018, “Failure Mode in Shear of Steel Fiber Reinforced Concrete Beams,” MATEC Web of Conferences, V. 163, pp. 1-8. 10.1051/matecconf/201816302003

Krassowska, J., and Kosior-Kazberuk, M., 2019, “Experimental Investigation of Shear Behavior of Two-Span Fiber Reinforced Concrete Beams,” Archives of Civil Engineering, V. 65, No. 2, pp. 35-55. doi: 10.2478/ace-2019-0017

Kwak, Y.-K.; Eberhard, M. O.; Kim, W.-S.; and Kim, J., 2002, “Shear Strength of Steel Fiber-Reinforced Concrete Beams without Stirrups,” ACI Structural Journal, V. 99, No. 4, July-Aug., pp. 530-538.

Kytinou, V. K.; Chalioris, C. E.; Karayannis, C. G.; and Elenas, A., 2020, “Effect of Steel Fibers on the Hysteretic Performance of Concrete Beams with Steel Reinforcement - Tests and Analysis,” Materials, V. 13, No. 2923, June, pp. 1-32. doi: 10.3390/ma13132923

Lakavath, C.; Joshi, S. S.; and Prakash, S. S., 2019, “Investigation of the Effect of Steel Fibers on the Shear Crack-Opening and Crack-Slip Behavior of Prestressed Concrete Beams Using Digital Image Correlation,” Engineering Structures, V. 193, No. 15, pp. 28-42. doi: 10.1016/j.engstruct.2019.05.030

Lamide, J. A.; Mohamed, R. N.; and Abd Rahman; A. B., 2016, “Experimental Results on the Shear Behaviour of Steel Fibre Self-Compacting Concrete (SFSCC) Beams,” Jurnal Teknologi (Sciences & Engineering), V. 78, No. 11, pp. 103-111.

Laufer, I. S., and Savaris; G., 2021, “Shear Strength of Steel Fiber Self-Compacting Concrete Beams,” Semina: Ciências Exatas e Technológicas, V. 42, No. 1, Jan,-June, pp. 45-62.

Lee, M. K., and Barr, B. I. G., 2004, “An Overview of the Fatigue Behaviour of Plain and Fibre Reinforced Concrete,” Cement and Concrete Composites, V. 26, No. 4, pp. 299-305. doi: 10.1016/S0958-9465(02)00139-7

Lehmann, M., and Głodkowska, W., 2021, “Shear Capacity and Behaviour of Bending Reinforced Concrete Beams Made of Steel Fibre-Reinforced Waste Sand Concrete,” Materials, V. 14, No. 11. doi: 10.3390/ma14112996

Li, C.; Zhao, M.; Geng, H.; Fu, H.; Zhang, X.; and Li, X., 2021, “Shear Testing of Steel Fiber Reinforced Expanded-Shale Lightweight Concrete Beams with Varying of Shear-Span to Depth Ratio and Stirrups,” Case Studies in Construction Materials, V. 14, pp. 1-11. doi: 10.1016/j.cscm.2021.e00550

Lim, W.-Y., and Hong, S.-G., 2016, “Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement,” International Journal of Concrete Structures and Materials, V. 10, No. 2, pp. 177-188. doi: 10.1007/s40069-016-0145-8

Majdzadeh, F.; Soleimani, S. M.; and Banthia, N., 2006, “Shear Strength of Reinforced Concrete Beams with a Fiber Concrete Matrix,” Canadian Journal of Civil Engineering, V. 33, No. 6, pp. 726-734. doi: 10.1139/l05-118

Minelli, F., and Plizzari, G. A., 2008, “Shear Design of FRC Members with Little or No Conventional Shear Reinforcement,” Tailor Made Concrete Structures, J. Walraven and D. Stroelhorst, eds., Taylor & Francis Group, London, UK.

Moradi, M.; Aletaha, S. H.; Asadzade, E.; and Qomzade, M. M., 2022, “Shear Strength of Fiber‑Reinforced Concrete Beams with Stirrups,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, V. 46, pp. 865-882. doi: 10.1007/s40996-021-00633-8

Moraes Neto, B. N., 2013, “Comportamento à punção de lajes lisas em concreto reforçado com fibras de aço sob carregamento simétrico,” doctoral thesis, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, Brazil.

NBR 16935, 2021, “Projeto de estruturas de concreto reforçado com fibras — Procedimento,” first edition, Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 33 pp.

NBR 16938, 2021, “Concreto reforçado com fibras — Controle da qualidade,” first edition, Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 12 pp.

Nguyen-Minh, L., and Rovnak, M., 2011, “New Formula for the Estimation of Shear Resistance of Fibre Reinforced Beams,” Canadian Journal of Civil Engineering, V. 38, No. 1, pp. 23-35. doi: 10.1139/L10-107

Oh, B. H.; Lim, D. H.; Yoo, S. W.; and Kim, E. S., 1998, “Shear Behaviour and Shear Analysis of Reinforced Concrete Beams Containing Steel Fibres,” Magazine of Concrete Research, V. 50, No. 4, pp. 283-291. doi: 10.1680/macr.1998.50.4.283

Padmanabham, K., and Teja, G. S. R., 2019, “Shear Performance of Steel Fibers in Reinforced Concrete Beams,” International Journal of Innovative Technology and Exploring Engineering, V. 9, No. 2, Dec., pp. 345-350.

Pal, S.; Kumar, A.; Arif, M.; and Shariq, M., 2020, “Shear Resistance of Steel Fibre Reinforced Concrete Beams,” Journal of Structural Engineering, V. 46, No. 5, pp. 384-394.

Parra-Montesinos, G. J., 2006, “Shear Strength of Beams with Deformed Steel Fibers,” Concrete International, V. 28, No. 11, Nov., pp. 56-67.

Praveen, K., and Rao, V., 2019, “Steel Fibres as a Partial Shear Reinforcement in Self-Compacting Concrete,” Recent Advances in Structural Engineering, V. 11, pp. 935-946. doi: 10.1007/978-981-13-0362-3_74

Reddy, K. R. K., and Reddy, K. C., 2015, “Flexural Behavior of Steel Fibre Reinforced High Strength Concrete Beams,” International Journal of Scientific Research, V. 4, No. 5, May, pp. 169-172.

RILEM TC 162-TDF, 2002, “Bending Test: Final Recommendations, Test and Design Methods for Steel Fibre Reinforced Concrete,” Materials and Structures, V. 35.

Sahoo, D. R., and Sharma, A., 2014, “Effect of Steel Fiber Content on Behavior of Concrete Beams with and without Stirrups,” ACI Structural Journal, V. 111, No. 5, Sept.-Oct., pp. 1157-1166. doi: 10.14359/51686821

Shaaban, I. G., 2006, “Shear Behavior of High Strength Fiber Reinforced Concrete Beams under Different Levels of Axial Compression Forces,” Banha University Faculty of Engineering, Department of Civil Engineering, Cairo, Egypt.

Singh, B., and Jain, K., 2014, “Appraisal of Steel Fibers as Minimum Shear Reinforcement in Concrete Beams,” ACI Structural Journal, V. 111, No. 5, Sept.-Oct., pp. 1191-1201. doi: 10.14359/51686969

Smith, A. S. J., and Xu, G., 2023, “Proposed Shear Capacity Equation for Ultra-High Performance Fiber Reinforced Concrete Beam Containing Coarse Aggregate,” Structures, V. 56, pp. 1-12. doi: 10.1016/j.istruc.2023.105030

Spinella, N.; Colajanni, P.; and La Mendola, L., 2012, “Nonlinear Analysis of Beams Reinforced in Shear with Stirrups and Steel Fibers,” ACI Structural Journal, V. 109, No. 1, Jan.-Feb., pp. 53-64.

Taqi, F. Y.; Mashrei, M. A.; and Oleiwi, H. M., 2021, “Experimental Study on the Effect of Corrosion on Shear Strength of Fibre-Reinforced Concrete Beams,” Structures, V. 33, pp. 2317-2333. doi: 10.1016/j.istruc.2021.06.006

Tuchscherer, R. G., and Quesada, A., 2015, “Replacement of Deformed Side-Face Steel Reinforcement in Deep Beams with Steel Fibers,” Structures, V. 3, Apr., pp. 130-136. doi: 10.1016/j.istruc.2015.03.008

Wang, Z. L.; Wu, L. P.; and Wang, J. G., 2010, “A Study of Constitutive Relation and Dynamic Failure for SFRC in Compression,” Construction and Building Materials, V. 24, No. 8, pp. 1358-1363. doi: 10.1016/j.conbuildmat.2009.12.038

Watanabe, K.; Jongvivatsakul, P.; and Niwa, J., 2010, “Evaluation of Shear Carried by Steel Fibers in Reinforced Concrete Beams with Steel Fibers,” Fracture Mechanics of Concrete and Concrete Structures, Korea Concrete Institute, Seoul, Republic of Korea, pp. 1445-1450.

Yuan, T.-F.; Yoo, D.-Y.; Yang, J.-M.; and Yoon, Y.-S., 2020, “Shear Capacity Contribution of Steel Fiber Reinforced High‑Strength Concrete Compared with and without Stirrup,” International Journal of Concrete Structures and Materials, V. 14, No. 1, 21 pp. doi: 10.1186/s40069-020-0396-2

Zhang, F.; Ding, Y.; Xu, J.; Zhang, Y.; Zhu, W.; and Shi, Y., 2016, “Shear Strength Prediction for Steel Fiber Reinforced Concrete Beams without Stirrups,” Engineering Structures, V. 127, pp. 101-116. doi: 10.1016/j.engstruct.2016.08.012

Zhao, J.; Liang, J.; Chu, L.; and Shen, F., 2018, “Experimental Study on Shear Behavior of Steel Fiber Reinforced Concrete Beams with High-Strength Reinforcement,” Materials, V. 11, No. 1682. doi:10.3390/ma11091682


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer