Biochar to Enhance Curing and Rheology of Mortars without Formwork

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Biochar to Enhance Curing and Rheology of Mortars without Formwork

Author(s): Devid Falliano, Luciana Restuccia, Jean-Marc Tulliani, and Giuseppe Andrea Ferro

Publication: Materials Journal

Volume: 122

Issue: 4

Appears on pages(s): 89-98

Keywords: biochar; internal curing agent; mechanical properties; rheological properties; three-dimensional (3-D) concrete printing

DOI: 10.14359/51746809

Date: 7/1/2025

Abstract:
Biochar properties—in particular, its fineness and ability to absorbwater—can be exploited to modify the rheological behavior ofcementitious conglomerates and improve the hydration of cementpaste under adverse curing conditions, such as those related tothree-dimensional (3-D) concrete printing. Regarding the freshstateproperties, the study of rheological properties, conductedon cementitious pastes for different biochar additions (by weightof cement: 0, 1.5, 2, and 3%), highlights that the biochar inducesan increase in yield stress and plastic viscosity. The investigationof mechanical properties—in particular, flexural and compressivestrength—performed on mortars evidences the internal curingeffect promoted by biochar additions (by weight of cement: 0, 3,and 7.7%). In fact, compared to the corresponding specimens curedfor the first 48 hours in the formwork, specimens with biochar addition cured directly in air are characterized by a drastically lowerreduction in compressive strength than the reference specimens—that is, approximately 36% and 48%, respectively. This interestingresult can also be exploited in traditional construction techniqueswhere faster demolding is needed.

Related References:

1. Reis, D. C.; Quattrone, M.; Souza, J. F.; Punhagui, K. R.; Pacca, S. A.; and John, V. M., “Potential CO2 Reduction and Uptake Due to Industrialization and Efficient Cement Use in Brazil by 2050,” Journal of Industrial Ecology, V. 25, No. 2, 2021, pp. 344-358. doi: 10.1111/jiec.13130

2. Mata-Falcón, J.; Bischof, P.; and Kaufmann, W., “Exploiting the Potential of Digital Fabrication for Sustainable and Economic Concrete Structures,” First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018, T. Wangler and R. J. Flatt, eds., Springer, Cham, Switzerland, 2019, pp. 157-166. doi: 10.1007/978-3-319-99519-9_14

3. Bak, D., “Rapid Prototyping or Rapid Production? 3D Printing Processes Move Industry Towards the Latter,” Assembly Automation, V. 23, No. 4, 2003, pp. 340-345. doi: 10.1108/01445150310501190

4. Buchli, J.; Giftthaler, M.; Kumar, N.; Lussi, M.; Sandy, T.; Dörfler, K.; and Hack, N., “Digital in Situ Fabrication-Challenges and Opportunities for Robotic in Situ Fabrication in Architecture, Construction, and Beyond,” Cement and Concrete Research, V. 112, 2018, pp. 66-75. doi: 10.1016/j.cemconres.2018.05.013

5. Khoshnevis, B., “Automated Construction by Contour Crafting—Related Robotics and Information Technologies,” Automation in Construction, V. 13, No. 1, 2004, pp. 5-19. doi: 10.1016/j.autcon.2003.08.012

6. Buswell, R. A.; Soar, R. C.; Gibb, A. G.; and Thorpe, A., “Freeform Construction: Mega-Scale Rapid Manufacturing for Construction,” Automation in Construction, V. 16, No. 2, 2007, pp. 224-231. doi: 10.1016/j.autcon.2006.05.002

7. Roussel, N., “Rheological Requirements for Printable Concretes,” Cement and Concrete Research, V. 112, 2018, pp. 76-85. doi: 10.1016/j.cemconres.2018.04.005

8. Zhang, Y.; She, W.; Yang, L.; Liu, G.; and Yang, Y., “Rheological and Harden Properties of the High-Thixotropy 3D Printing Concrete,” Construction and Building Materials, V. 201, 2019, pp. 278-285. doi: 10.1016/j.conbuildmat.2018.12.061

9. Falliano, D.; De Domenico, D.; Ricciardi, G.; and Gugliandolo, E., “3D-Printable Lightweight Foamed Concrete and Comparison with Classical Foamed Concrete in Terms of Fresh State Properties and Mechanical Strength,” Construction and Building Materials, V. 254, 2020, p. 119271. doi: 10.1016/j.conbuildmat.2020.119271

10. Falliano, D.; Crupi, G.; De Domenico, D.; Ricciardi, G.; Restuccia, L.; Ferro, G.; and Gugliandolo, E., “Investigation on the Rheological Behavior of Lightweight Foamed Concrete for 3D Printing Applications,” Second RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2020, F. P. Bos, S. S. Lucas, R. J. M. Wolfs, and T. A. M. Salet, eds., Springer, Cham, Switzerland, pp. 246-254. doi: 10.1007/978-3-030-49916-7_25

11. Cho, S.; van Rooyen, A.; Kearsley, E.; and van Zijl, G., “Foam Stability of 3D Printable Foamed Concrete,” Journal of Building Engineering, V. 47, 2022, p. 103884. doi: 10.1016/j.jobe.2021.103884

12. Markin, V.; Krause, M.; and Otto, J., “3D-Printing with Foam Concrete: From Material Design and Testing to Application and Sustainability,” Journal of Building Engineering, V. 43, 2021, p. 102870. doi: 10.1016/j.jobe.2021.102870

13. Jha, K. N., Formwork for Concrete Structures, Tata McGraw-Hill Education Private Limited, India, 2012.

14. Veenendaal, D.; West, M.; and Block, P., “History and Overview of Fabric Formwork: Using Fabrics for Concrete Casting,” Structural Concrete, V. 12, No. 3, 2011, pp. 164-177. doi: 10.1002/suco.201100014

15. Coppola, L., Concretum, McGraw-Hill, Italy, 2007.

16. Hamzah, N.; Mohd Saman, H.; Baghban, M. H.; Mohd Sam, A. R.; Faridmehr, I.; Muhd Sidek, M. N.; Benjeddou, O.; and Huseien, G. F., “A Review on the Use of Self-Curing Agents and its Mechanism in High-Performance Cementitious Materials,” Buildings, V. 12, No. 2, 2022, p. 152. doi: 10.3390/buildings12020152

17. Gupta, S.; Tulliani, J. M.; and Kua, H. W., “Carbonaceous Admixtures in Cementitious Building Materials: Effect of Particle Size Blending on Rheology, Packing, Early Age Properties and Processing Energy Demand,” The Science of the Total Environment, V. 807, 2022, p. 150884. doi: 10.1016/j.scitotenv.2021.150884

18. Tan, K. H.; Wang, T. Y.; Zhou, Z. H.; and Qin, Y. H., “Biochar as a Partial Cement Replacement Material for Developing Sustainable Concrete: An Overview,” Journal of Materials in Civil Engineering, ASCE, V. 33, No. 12, 2021, p. 03121001. doi: 10.1061/(ASCE)MT.1943-5533.0003987

19. Azzi, E. S.; Karltun, E.; and Sundberg, C., “Prospective Life Cycle Assessment of Large-Scale Biochar Production and Use for Negative Emissions in Stockholm,” Environmental Science and Technology, V. 53, No. 14, 2019, pp. 8466-8476. doi: 10.1021/acs.est.9b01615

20. Chen, L.; Zhang, Y.; Wang, L.; Ruan, S.; Chen, J.; Li, H.; Yang, J.; Mechtcherine, V.; and Tsang, D. C., “Biochar-Augmented Carbon-Negative Concrete,” Chemical Engineering Journal, V. 431, 2022, p. 133946. doi: 10.1016/j.cej.2021.133946

21. Suarez-Riera, D.; Restuccia, L.; and Ferro, G. A., “The Use of Biochar to Reduce the Carbon Footprint of Cement-Based Materials,” Procedia Structural Integrity, V. 26, 2020, pp. 199-210. doi: 10.1016/j.prostr.2020.06.023

22. Gupta, S.; Kua, H. W.; and Cynthia, S. Y. T., “Use of Biochar-Coated Polypropylene Fibers for Carbon Sequestration and Physical Improvement of Mortar,” Cement and Concrete Composites, V. 83, 2017, pp. 171-187. doi: 10.1016/j.cemconcomp.2017.07.012

23. Restuccia, L., and Ferro, G. A., “Promising Low Cost Carbon-Based Materials to Improve Strength and Toughness in Cement Composites,” Construction and Building Materials, V. 126, 2016, pp. 1034-1043. doi: 10.1016/j.conbuildmat.2016.09.101

24. Falliano, D.; De Domenico, D.; Sciarrone, A.; Ricciardi, G.; Restuccia, L.; Ferro, G.; Tulliani, J. M.; and Gugliandolo, E. “Influence of Biochar Additions on the Fracture Behavior of Foamed Concrete,” Frattura ed Integrità Strutturale, V. 14, No. 51, 2019, pp. 189-198. doi: 10.3221/IGF-ESIS.51.15

25. Falliano, D.; Restuccia, L.; and Ferro, G. A., “Biochar Addition for 3DCP: A Preliminary Study,” Procedia Structural Integrity, V. 41, 2022, pp. 699-703. doi: 10.1016/j.prostr.2022.05.079

26. Buswell, R. A.; De Silva, W. L.; Jones, S. Z.; and Dirrenberger, J., “3D Printing Using Concrete Extrusion: A Roadmap for Research,” Cement and Concrete Research, V. 112, 2018, pp. 37-49. doi: 10.1016/j.cemconres.2018.05.006

27. Gupta, S.; Kua, H. W.; and Low, C. Y., “Use of Biochar as Carbon Sequestering Additive in Cement Mortar,” Cement and Concrete Composites, V. 87, 2018, pp. 110-129. doi: 10.1016/j.cemconcomp.2017.12.009

28. Ferraris, C. F.; Obla, K. H.; and Hill, R., “The Influence of Mineral Admixtures on the Rheology of Cement Paste and Concrete,” Cement and Concrete Research, V. 31, No. 2, 2001, pp. 245-255. doi: 10.1016/S0008-8846(00)00454-3

29. Liu, H.; Sun, X.; Du, H.; Lu, H.; Ma, Y.; Shen, W.; and Tian, Z., “Effects and Threshold of Water Film Thickness on Multi-Mineral Cement Paste,” Cement and Concrete Composites, V. 112, 2020, p. 103677. doi: 10.1016/j.cemconcomp.2020.103677

30. Bonen, D., and Shah, S. P., “Fresh and Hardened Properties of Self‐Consolidating Concrete,” Progress in Structural Engineering and Materials, V. 7, No. 1, 2005, pp. 14-26. doi: 10.1002/pse.186

31. Zhang, C.; Nerella, V. N.; Krishna, A.; Wang, S.; Zhang, Y.; Mechtcherine, V.; and Banthia, N., “Mix Design Concepts for 3D Printable Concrete: A Review,” Cement and Concrete Composites, V. 122, 2021, p. 104155. doi: 10.1016/j.cemconcomp.2021.104155

32. Tan, K.; Pang, X.; Qin, Y.; and Wang, J., “Properties of Cement Mortar Containing Pulverized Biochar Pyrolyzed at Different Temperatures,” Construction and Building Materials, V. 263, 2020, p. 120616. doi: 10.1016/j.conbuildmat.2020.120616

33. Wang, L.; Chen, L.; Poon, C. S.; Wang, C. H.; Ok, Y. S.; Mechtcherine, V.; and Tsang, D. C., “Roles of Biochar and CO2 Curing in Sustainable Magnesia Cement-Based Composites,” ACS Sustainable Chemistry and Engineering, V. 9, No. 25, 2021, pp. 8603-8610. doi: 10.1021/acssuschemeng.1c02008


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer