Study of Optimized Mechanical Properties in Sustainable Geopolymer Mortar with Tire Waste

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Study of Optimized Mechanical Properties in Sustainable Geopolymer Mortar with Tire Waste

Author(s): Rondinele A. R. Ferreira, Cristiane Pires, Leonardo S. Gratao, and Leila A. C. Motta

Publication: Materials Journal

Volume: 122

Issue: 3

Appears on pages(s): 89-101

Keywords: central composite design (CCD); ecological composites; geopolymer mortar; metakaolin; tire rubber (TR)

DOI: 10.14359/51746717

Date: 5/1/2025

Abstract:
The rapid growth of population, consumption, and economy stimulates the extraction of natural resources at an accelerated rate, directly impacting the environment by generating waste and CO2 emissions, primarily in the civil construction industry. This research investigates the use of untreated tire waste rubber as a replacement for fine aggregate (sand) in geopolymer mortar, in response to environmental concerns from the civil construction industry. The study uses a central composite design (CCD) and response surface methodology (RSM) to optimize the modulus of rupture (MOR), modulus of elasticity (MOE), and toughness. With a global desirability of 0.73, the optimized values for these variables were 2.85 MPa, 676.3 MPa, and 0.331 kJ/m2, respectively, with experimental errors below 10%. The results suggest that tire waste rubber can effectively replace fine aggregate in geopolymer mortar, potentially reducing environmental impact.

Related References:

1. Öz, A.; Bayrak, B.; Kaplan, G.; and Cüneyt Aydın, A., “Effect of Waste Colemanite and PVA Fibers on GBFS-Metakaolin Based High Early Strength Geopolymer Composites (HESGC): Mechanical, Microstructure and Carbon Footprint Characteristics,” Construction and Building Materials, V. 377, May 2023, p. 131064. doi: 10.1016/j.conbuildmat.2023.131064

2. Harmal, A.; Khouchani, O.; El-Korchi, T.; Tao, M.; and Walker, H. W., “Bioinspired Brick-and-Mortar Geopolymer Composites with Ultra-High Toughness,” Cement and Concrete Composites, V. 137, Mar. 2023, p. 104944. doi: 10.1016/j.cemconcomp.2023.104944

3. Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; and Zhu, T., “A Review of Low-Carbon Technologies and Projects for the Global Cement Industry,” Journal of Environmental Sciences, V. 136, 2024, pp. 682-697. doi: 10.1016/j.jes.2023.01.021

4. Yeluri, S. C.; Singh, K.; Ramesh Babu, T. S.; and Garikapati, D., “Durability Properties of Rubber Aggregates Based Geopolymer Concrete—A Review,” Materials Today: Proceedings, V. 93, 2023, pp. 2214-7853. doi: 10.1016/j.matpr.2023.07.264

5. Iqbal, H. W.; Hamcumpai, K.; Nuaklong, P.; Jongvivatsakul, P.; Likitlersuang, S.; Chintanapakdee, C.; and Wijeyewickrema, A. C., “Effect of Graphene Nanoplatelets on Engineering Properties of Fly Ash-Based Geopolymer Concrete Containing Crumb Rubber and Its Optimization Using Response Surface Methodology,” Journal of Building Engineering, V. 75, Sept. 2023, p. 107024. doi: 10.1016/j.jobe.2023.107024

6. Shanmugam, R.; Sowmiya, S.; Dinesh, V.; Venkatramana, N.; and Naveen, S., “A Study on Eco-Friendly Composite Blocks Incorporating Scrap Tyre Rubber and Steel Slag as Coarse Aggregate with Sisal Fiber,” Materials Today: Proceedings, 2023. doi: 10.1016/j.matpr.2023.05.234

7. Rocha, T. S.; Dias, D. P.; França, F. C. C.; Guerra, R. R. S.; and Marques, L. R. C. O., “Metakaolin-Based Geopolymer Mortars with Different Alkaline Activators (Na+ and K+),” Construction and Building Materials, V. 178, July 2018, pp. 453-461. doi: 10.1016/j.conbuildmat.2018.05.172

8. Askarian, M.; Tao, Z.; Samali, B.; Adam, G.; and Shuaibu, R., “Mix Composition and Characterisation of One-Part Geopolymers with Different Activators,” Construction and Building Materials, V. 225, Nov. 2019, pp. 526-537. doi: 10.1016/j.conbuildmat.2019.07.083

9. Passuello, A.; Rodríguez, E. D.; Hirt, E.; Longhi, M.; Bernal, S. A.; Provis, J. L.; and Kirchheim, A. P., “Evaluation of the Potential Improvement in the Environmental Footprint of Geopolymers Using Waste-

Derived Activators,” Journal of Cleaner Production, V. 166, Nov. 2017, pp. 680-689. doi: 10.1016/j.jclepro.2017.08.007

10. Garcia Lodeiro, I.Cristelo, N.; Palomo, A.; and Fernández-Jiménez, A., “Use of Industrial By-Products as Alkaline Cement Activators,” Construction and Building Materials, V. 253, Aug. 2020, p. 119000. doi: 10.1016/j.conbuildmat.2020.119000

11. Alaloul, W. S.; Musarat, M. A.; A Tayeh, B.; Sivalingam, S.; Rosli, M. F. B.; Haruna, S.; and Khan, M. I., “Mechanical and Deformation Properties of Rubberized Engineered Cementitious Composite (ECC),” Case Studies in Construction Materials, V. 13, Dec. 2020, p. e00385. doi: 10.1016/j.cscm.2020.e00385

12. Bompa, D. V.; Elghazouli, A. Y.; Xu, B.; Stafford, P. J.; and Ruiz-Teran, A. M., “Experimental Assessment and Constitutive Modelling of Rubberised Concrete Materials,” Construction and Building Materials, V. 137, Apr. 2017, pp. 246-260. doi: 10.1016/j.conbuildmat.2017.01.086

13. Sofi, A., “Effect of Waste Tyre Rubber on Mechanical and Durability Properties of Concrete – A Review,” Ain Shams Engineering Journal, V. 9, Dec. 2018, pp. 2691-2700. doi: 10.1016/j.asej.2017.08.007

14. Sambucci, M.; Marini, D.; and Valente, M., “Tire Recycled Rubber for More Eco-Sustainable Advanced Cementitious Aggregate,” Recycling, V. 5, May 2020, p. 11. doi: 10.3390/recycling5020011

15. Aiello, M. A., and Leuzzi, F., “Waste Tyre Rubberized Concrete: Properties at Fresh and Hardened State,” Aug.-Sept. 2010, pp. 1696-1704. doi: 10.1016/j.wasman.2010.02.005

16. Jusli, E.; Nor, H. M.; Jaya, R. P.; and Zaiton, H., “Chemical Properties of Waste Tyre Rubber Granules,” Advanced Materials Research, V. 911, Mar. 2014, pp. 77-81. doi: 10.4028/www.scientific.net/AMR.911.77

17. Li, F.; Zhang, X.; Wang, L.; and Zhai, R., “The Preparation Process, Service Performances and Interaction Mechanisms of Crumb Rubber Modified Asphalt (CRMA) By Wet Process: A Comprehensive Review,” Construction and Building Materials, V. 354, Nov. 2022, p. 129168. doi: 10.1016/j.conbuildmat.2022.129168

18. Duan, K.; Wang, C.; Liu, J.; Song, L.; Chen, Q.; and Chen, Y., “Research Progress and Performance Evaluation of Crumb-Rubber-

Modified Asphalts and Their Mixtures,” Construction and Building Materials, V. 361, Dec. 2022, p. 129687. doi: 10.1016/j.conbuildmat.2022.129687

19. Bu, C.; Zhu, D.; Lu, X.; Liu, L.; Sun, Y.; Yu, L.; Xiao, T.; and Zhang, W., “Modification of Rubberized Concrete: A Review,” Buildings, V. 12, June 2022, pp. 999. doi: 10.3390/buildings12070999

20. Li, Y.; Chai, J.; Wang, R.; Zhou, Y.; and Tong, X., “A Review of the Durability-Related Features of Waste Tyre Rubber as a Partial Substitute for Natural Aggregate in Concrete,” Buildings, V. 12, Nov. 2022, p. 1975. doi: 10.3390/buildings12111975

21. Ding, Y.; Zhang, J.; Chen, X.; Wang, X.; and Jia, Y., “Experimental Investigation on Static and Dynamic Characteristics of Granulated Rubber-Sand Mixtures as a New Railway Subgrade Filler,” Construction and Building Materials, V. 273, No. 3, 2021, p. 121955. doi: 10.1016/j.conbuildmat.2020.121955

22. Tasalloti, A.; Chiaro, G.; Murali, A.; and Banasiak, L., “Physical and Mechanical Properties of Granulated Rubber Mixed with Granular Soils—A Literature Review,” Sustainability, V. 13, No. 4, 2021, p. 4309. doi: 10.3390/su13084309

23. Moasas, A. M.; Amin, M. N.; Khan, K.; Ahmad, W.; Al-Hashem, M. N. A.; Deifalla, A. F.; and Ahmad, A., “A Worldwide Development in the Accumulation of Waste Tires and Its Utilization in Concrete as a Sustainable Construction Material: A Review,” Case Studies in Construction Materials, V. 17, No. 12, 2022, p. e01677. doi: 10.1016/j.cscm.2022.e01677

24. Gill, P.; Jangra, P.; Roychand, R.; Saberian, M.; and Li, J., “Effects of Various Additives on the Crumb Rubber Integrated Geopolymer Concrete,” Cleaner Materials, V. 8, No. 6, 2023, p. 100181. doi: 10.1016/j.clema.2023.100181

25. Zhong, H.; AlHuwaidi, A.; Zhang, Y.; and Zhang, M., “Effect of Crumb Rubber on Engineering Properties of Fly Ash-Slag Based Engineered Geopolymer Composites,” Construction and Building Materials, V. 409, No. 12, 2023, p. 133878. doi: 10.1016/j.conbuildmat.2023.133878

26. Chen, Z.; Ye, H.; and Cai, J., “Recycling of Waste Tire Rubber as Aggregate in Impact-Resistant Engineered Cementitious Composites,” Construction and Building Materials, V. 359, No. 12, 2022, p. 129477. doi: 10.1016/j.conbuildmat.2022.129477

27. Abdellatief, M.; Mortagi, M.; Elrahman, M. A.; Tahwia, A. M.; Alluqmani, A. E.; and Alanazi, H., “Characterization and Optimization of Fresh and Hardened Properties of Ultra-High Performance Geopolymer Concrete,” Case Studies in Construction Materials, V. 19, No. 12, 2023, p. e02549. doi: 10.1016/j.cscm.2023.e02549

28. Machado, P. J. C.; Ferreira, R. A. R.; and Motta, L. A. C., “Study of the Effect of Silica Fume and Latex Dosages in Cementitious Composites Reinforced with Cellulose Fibers,” Journal of Building Engineering, V. 31, 2020, p. 101442.

29. da Silva Alves, L. C.; Ferreira, R. A. R.; Machado, L. B.; and Motta, L. A. C., “Optimization of Metakaolin-Based Geopolymer Reinforced with Sisal Fibers Using Response Surface Methology,” Industrial Crops and Products, V. 139, 2019, p. 111551. doi: 10.1016/j.indcrop.2019.111551

30. da Costa, D. L.; da Costa, F. P.; Fernandes, J. V.; Pinto, H. C.; Cartaxo, J. M.; Neves, G. A.; Menezes, R. R.; and Rodrigues, A. M., “Multivariate Analysis of a Geopolymeric System Containing Metakaolin and α-Al2O3,” Construction and Building Materials, V. 382, 2023, p. 131302. doi: 10.1016/j.conbuildmat.2023.131302

31. Imanian, M. E., and Biglari, F. R., “Modeling and Prediction of Surface Roughness and Dimensional Accuracy in SLS 3D Printing of PVA/CB Composite Using the Central Composite Design,” Journal of Manufacturing Processes, V. 75, 2022, pp. 154-169. doi: 10.1016/j.jmapro.2021.12.065

32. Weise, K.; Ukrainczyk, N.; Duncan, A.; and Koenders, E., “Enhanced Metakaolin Reactivity in Blended Cement with Additional Calcium Hydroxide,” Materials, V. 15, No. 1, 2022, p. 367. doi: 10.3390/ma15010367

33. Helene, P. R. L., and Medeiros, M. H. F., “Estudo da Influência do Metacaulim HP Como Adição de Alta Eficiência em Concretos de Cimento Portland, POLI-USP,” Relatório Técnico, São Paulo, 2023.

34. Chub-uppakar, T.; Chompoorant, T.; Thepumong, T.; Sae-Long, W.; Khamplod, A.; Chaiprapat, S., “Influence of Partial Substitution of Metakaolin by Palm Oil Fuel Ash and Alumina Waste Ash on Compressive Strength and Microstructure in Metakaolin-Based Geopolymer Mortar,” Case Studies in Construction Materials, V. 19, 2023, p. e02519. doi: 10.1016/j.cscm.2023.e02519

35. Maruoka, L. M. A.; Pinheiro, I. F.; Freitas, H. S.; Nobre, F. X.; and Scalvi, L. V. A., “Effect of Thermal Annealing on Kaolin From the Amazon region, Aiming at the Production of Geopolymer,” Journal of Materials Research and Technology, V. 25, 2023, pp. 2471-2485.

36. Provis, J. L., “Alkali-Activated Materials,” Cement and Concrete Research, V. 114, 2018, pp. 40-48. doi: 10.1016/j.cemconres.2017.02.009

37. Provis, J. L., “Geopolymers and Other Alkali Activated Materials: Why, How, and What?” Materials and Structures, V. 47, 2014, pp. 11-25. doi: 10.1617/s11527-013-0211-5

38. ABNT NBR NM 52, “Fine Aggregate – Determination of the Bulk Specific Gravity and Apparent Specific Gravity,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2009.

39. ABNT NBR 248, “Aggregates – Sieve Analysis of Fine and Coarse Aggregates,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2003.

40. Shi, X.; Zhang, C.; Wang, X.; Zhang, T.; and Wang, Q., “Response Surface Methodology for Multi-Objective Optimization of Fly Ash-GGBS Based Geopolymer Mortar,” Construction and Building Materials, V. 315, 2022, p. 125644. doi: 10.1016/j.conbuildmat.2021.125644

41. Ferreira, R. A. R.; Meireles, C. S.; Assunção, R. M. N.; Barrozo, M. A. S.; and Soares, R. R., “Optimization of the Oxidative Fast Pyrolysis Process of Sugarcane Straw by TGA and DSC Analyses,” Biomass and Bioenergy, V. 134, 2020, p. 105456. doi: 10.1016/j.biombioe.2019.105456

42. Liu, J., and Tran, P., “Cement Mortar Containing Crumb Rubber Coated with Geopolymer: From Microstructural Properties to Compressive Strength,” Construction and Building Materials, V. 383, 2023, p. 131284. doi: 10.1016/j.conbuildmat.2023.131284

43. Azmi, A. A.; Adullah, M. M. A. B.; Ghazali, C. M. R.; Ahmad, R.; Musa, L.; and Rou, L. S., “The Effect of Different Crumb Rubber Loading on the Properties of Fly Ash-Based Geopolymer Concrete,” IOP Conference Series: Materials Science and Engineering, 2019, p. 12079.

44. ABNT NBR 13276, “Mortars Applied on Walls and Ceiling – Determination of the Consistence Index,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2016.

45. Kim, B., and Lee, S., “Review on Characteristics of Metakaolin-Based Geopolymer and Fast Setting,” Journal of the Korean Ceramic Society, V. 57, 2020, pp. 368-377. doi: 10.1007/s43207-020-00043-y

46. ABNT NBR 13279, “Mortars Applied on Walls and Ceilings – Determination of the Flexural and the Compressive Strength in the Hardened Stage,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2005.

47. Réunion Internationale des Laboratoires d’Essais et de Recherches sur les Matériaux e les Constructions (RILEM), “Test for Determination of Modulus of Rupture and Limit of Proportionality of Thin Fibre Reinforced Cement Section,” Materials and Structures, V. 17, Nov. 1984, pp. 441-456.

48. Santos, M. N. G.; Santos, C. M.; Souza, M. T. G.; Vasconcelos, E. A.; Nóbrega, A. C. V.; and Marinho, E. P., “Use of Sodium Metasilicate as Silica Source and Stabilizing Agent in Two-Part Metakaolin-H2O2 Geopolymer Foams,” Construction and Building Materials, V. 391, 2023, p. 131907. doi: 10.1016/j.conbuildmat.2023.131907

49. Yang, F.; Li, Z.; Li, Y.; Han, G.; Fam, H.; Liu, X.; Xu, M.; and Guo, M., “The Effects of Na2O/K2O Flux on Ash Fusion Characteristics for High Silicon-Aluminum Coal in Entrained-Flow Bed Gasification,” Energy, V. 282, Nov. 2023, p. 128603.

50. Luhar, S.; Chaudhary, S.; and Luhar, I., “Development of Rubberized Geopolymer Concrete: Strength and Durability Studies,” Construction and Building Materials, V. 204, No. 3, 2019, pp. 740-753. doi: 10.1016/j.conbuildmat.2019.01.185

51. Deng, Z.; Yang, Z.; and Pan, X., “Synergetic Effects of Recycled Crumb Rubber and Glass Cullet on the Engineering Properties of Geopolymer Mortar,” Cement and Concrete Composites, V. 137, No. 3, 2023, p. 104907. doi: 10.1016/j.cemconcomp.2022.104907

52. Ameri, F.; Shoaei, P.; Musaeei, H. R.; Zareei, S. A.; and Cheah, C. B., “Partial Replacement of Copper Slag with Treated Crumb Rubber Aggregates in Alkali-Activated Slag Mortar,” Construction and Building Materials, V. 256, 2020, pp. 119468.

53. Skripkiūnas, G.; Grinys, A.; and Cernius, B., “Deformation Properties of Concrete with Rubber Waste Additives,” Materials Science, V. 13, No. 3, 2007, pp. 219-223.

54. Hossein, H. A.; Hamzawy, E. M. A.; El-Bassyouni, G. T.; and Nabawy, B. S., “Mechanical and Physical Properties of Synthetic Sustainable Geopolymer Binders Manufactured Using Rockwool, Granulated Slag, and Silica Fume,” Construction and Building Materials, V. 367, 2023, p. 130143. doi: 10.1016/j.conbuildmat.2022.130143

55. Negahban, E.; Bagheri, A.; and Sanjayan, J., “Pore Structure Profile of Ambient Temperature-Cured Geopolymer Concrete and Its Effect on Engineering Properties,” Construction and Building Materials, V. 406, 2023, p. 133311. doi: 10.1016/j.conbuildmat.2023.133311

56. Lizcano, M.; Kim, H. S.; Basu, S.; and Radovic, M., “Mechanical Properties of Sodium and Potassium Activated Metakaolin-Based Geopolymer,” Journal of Materials Science, V. 47, 2012, pp. 2607-2616. doi: 10.1007/s10853-011-6085-4

57. Pouhet, R.; Cyr, M.; and Bucher, R. “Influence of the Initial Water Content in Flash Calcined Metakaolin-Based Geopolymer,” Construction and Building Materials, V. 201, 2019, pp. 421-429.

58. Muhammad, S.; Yuan, Q.; Alam, M.; Javed, M. F.; Rehman, M. F.; and Mohamed, A., “Fresh and Hardened Properties of Waste Rubber Tires-Based Concrete: A State Art of Review,” SN Applied Sciences, V. 5, No. 4, 2023, p. 119.

59. Arunkumar, K.; Muthukannan, M.; and Ganesh, A. C., “Mitigation of Waste Rubber Tire and Waste Wood Ash by the Production of Rubberized Low Calcium Waste Wood Ash Based Geopolymer Concrete and Influence of Waste Rubber Fibre in Setting Properties and Mechanical Behavior,” Environmental Research, V. 194, No. 3, 2021, p. 110661. doi: 10.1016/j.envres.2020.110661

60. Di Mundo, R.; Petrella, A.; and Notarnicola, M., “Surface and Bulk Hydrophobic Cement Composites by Tire Rubber Addition,” Construction and Building Materials, V. 172, 2018, pp. 176-184. doi: 10.1016/j.conbuildmat.2018.03.233

61. Obeidy, N. F. A., and Khalil, W. I., “Studying the Possibility of Producing Paving Flags from Geopolymer Concrete Containing Local Wastes,” Engineering and Technology Journal, V. 41, No. 11, 2023, pp. 1325-1336. doi: 10.30684/etj.2023.141321.1494

62. Duxson, P.; Fernández-Jiménez, A.; Provis, J. L.; Lukey, G. C.; Palomo, A.; and Van Deventer, J. S., “Geopolymer Technology: The Current State of the Art,” Journal of Materials Science, V. 42, No. 12, 2007, pp. 2917-2933. doi: 10.1007/s10853-006-0637-z

63. Nadi, M.; Allaoui, O.; Majdoubi, H.; Hamdane, H.; Haddaju, Y.; Mandouri, S.; Tamraoui, Y.; Manoun, B.; Hannache, H.; and Oumam, M., “Effect of Natural Graphite Additions on the Microstructural and Mechanical Behavior of Metakaolin Based Geopolymer Materials,” Journal of Building Engineering, V. 78, No. 12, 2023, p. 107562. doi: 10.1016/j.jobe.2023.107562

64. Shah, V.; Parashar, A.; and Scott, A., “Understanding the Importance of Carbonates on the Performance of Portland Metakaolin Cement,” Construction and Building Materials, V. 319, No. 2, 2022, pp. 126155.

65. Ates, F.; Park, K. T.; Kim, W. K.; Woo, B. H.; and Kim, H. G., “Effects of Treated Biomass Wood Fly Ash as a Partial Substitute for Fly Ash in a Geopolymer Mortar System,” Construction and Building Materials, V. 376, No. 6, 2023, p. 131063. doi: 10.1016/j.conbuildmat.2023.131063

66. Jaradat, Y., and Matalkah, F., “Effects of Micro Silica on the Compressive Strength and Absorption Characteristics of Olive Biomass Ash-Based Geopolymer,” Case Studies in Construction Materials, V. 18, No. 7, 2023, p. e01870. doi: 10.1016/j.cscm.2023.e01870

67. Aziz, A., “Structural and Physico-Mechanical Investigations of New Acidic Geopolymers Based on Natural Moroccan Pozzolan: A Parametric Study,” Silicon, V. 15, 2023, pp. 1133-1144.

68. dos ReisFerreira, R. A., and Gratão, L. S., and de CastroMotta, L. A., “Evaluation and Optimization of the Replacement of Fine Aggregate by Waste Tire Rubber in Geopolymer Mortar with Metakaolin,” Mechanics of Composite Materials, V. 59, 2024, pp. 1223-1238. doi: 10.1007/s11029-023-10168-w

69. Castillo, H.; Collado, H.; Droguett, T.; Vesely, M.; Garrido, P.; and Palma, S., “State of the Art of Geopolymers: A Review,” e-Polymers, V. 22, Jan. 2022, pp. 108-124.

70. Chen, L.; Wang, Z.; Wang, Y.; and Feng, J., “Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer,” Materials, V. 9, 2016, pp. 767.

71. Yang, H.; Liu, L.; Yang, W.; Liu, H.; Ahmad, W.; Ahmad, A.; Aslam, F.; and Joyklad, P., “A Comprehensive Overview of Geopolymer Composites: A Bibliometric Analysis and Literature Review,” Case Studies in Construction Materials, V. 16, No. 6, 2022, p. e00830. doi: 10.1016/j.cscm.2021.e00830

72. Zhang, Z.; Provis, J. L.; Reid, A.; and Wang, H., “Geopolymer Foam Concrete: An Emerging Material for Sustainable Construction,” Construction and Building Materials, V. 56, No. 4, 2014, pp. 113-127. doi: 10.1016/j.conbuildmat.2014.01.081

73. Mucsi, G.; Szenczi, Á.; and Nagy, S., “Fiber Reinforced Geopolymer from Synergetic Utilization of Fly Ash and Waste Tire,” Journal of Cleaner Production, V. 178, No. 3, 2018, pp. 429-440. doi: 10.1016/j.jclepro.2018.01.018

74. Zedler, L.; Przybysz-Romatowska, M.; Haponiuk, J.; Wang, S.; and Formela, K., “Modification of Ground Tire Rubber-Promising Approach for Development of Green Composites,” Journal of Composites Science, V. 4, No. 1, Dec. 2020, pp. 1-11.

75. Formela, K.; Zedler, L.; Kowalkowska-Zedler, D.; Colom, X.; Cañavate, J.; and Saeb, M. R., “Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives,” Polymers, V. 12, No. 12, 2020, p. 3018. doi: 10.3390/polym12123018

76. Zedler, L.; Kowalkowska-Zedler, D.; Vahabi, H.; Saeb, M. R.; Colom, X.; Cañavate, J.; Wang, S.; and Formela, K., “Preliminary Investigation on Auto-Thermal Extrusion of Ground Tire Rubber,” Materials, V. 12, No. 13, 2019, p. 2090. doi: 10.3390/ma12132090

77. Formela, K.; Hejna, A.; Zedler, L.; Colom, X.; and Cañavate, J., “Microwave Treatment in Waste Rubber Recycling – Recent Advances and Limitations,” Express Polymer Letters, V. 13, No. 6, 2019, pp. 565-588. doi: 10.3144/expresspolymlett.2019.48

78. Mohana, R., and Bharathi, S. M. L., “Sustainable Approach of Promoting Impact Resistant Rubberized Geopolymer by Reducing the Embodied Emission Rate of Climate Changing Substances,” Structures, V. 57, No. 11, 2023, p. 105241. doi: 10.1016/j.istruc.2023.105241


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer