How Does Coarse Aggregate Type Influence Mechanical Properties of High-Strength Concrete?

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: How Does Coarse Aggregate Type Influence Mechanical Properties of High-Strength Concrete?

Author(s): Y. El Berdai, Y. Taha, A. M. Safhi, R. Trauchessec, R. Hakkou, and M. Benzaazoua

Publication: Materials Journal

Volume: 122

Issue: 3

Appears on pages(s): 79-88

Keywords: coarse aggregate (CA); compressive strength (CS); highstrength concrete (HSC); modulus of elasticity (MOE); prediction model; systematic review

DOI: 10.14359/51746716

Date: 5/1/2025

Abstract:
Research has shown that the type of coarse aggregate (CA) significantly impacts the properties of high-strength concrete (HSC). This paper provides a systematic and comprehensive review of the influence of CA type, strength, and elasticity on compressive strength (CS) and modulus of elasticity (MOE) of HSC. The CS can increase by up to 141% and the MOE gains up to 48% with different CA types, which is explained by the Compressible Packing Model (CPM) and shows the significant impact of CA on the MOE. The equation for the prediction of the MOE presented in the “Report on High-Strength Concrete” by ACI Committee 363 was calibrated using a CA type coefficient based on the data points collected to highlight the influence of CA on the MOE of HSC. Future research could focus on the effect of the adherence and elasticity of CAs.

Related References:

1. Alexander, M., and Mindess, S., Aggregates in Concrete, CRC Press, Boca Raton, FL, 2010, 448 pp.

2. Neville, A. M., Properties of Concrete, Longman London, London, UK, 1995.

3. De Brito, J.; Kurda, R.; and Raposeiro da Silva, P., “Can We Truly Predict the Compressive Strength of Concrete without Knowing the Properties of Aggregates?” Applied Sciences, V. 8, No. 7, 2018, p. 1095. doi: 10.3390/app8071095

4. Alexander, M. G., and Davis, D. E., “The Influence of Aggregates on the Compressive Strength and Elastic Modulus of Concrete,” Civil Engineering = Siviele Ingenieurswese, V. 1992, No. 5, 1992, pp. 161-170.

5. Kaplan, M. F., “Flexural and Compressive Strength of Concrete as Affected by the Properties of Coarse Aggregates,” ACI Journal Proceedings, V. 55, No. 5, May 1959, pp. 1193-1208.

6. Tanesi, J.; Bentz, D.; Jones, S.; Beyene, M.; Kim, H.; Ardani, A.; Arnold, J.; and Stutzman, P., “Influence of Aggregate Properties on Concrete Mechanical Performance,” Transportation Research Board Annual Meeting, Washington, DC, Jan. 2017, 20 pp.

7. Góra, J., and Piasta, W., “Impact of Mechanical Resistance of Aggregate on Properties of Concrete,” Case Studies in Construction Materials, V. 13, 2020, p. e00438. doi: 10.1016/j.cscm.2020.e00438

8. de Larrard, F., and Belloc, A., “The Influence of Aggregate on the Compressive Strength of Normal and High-Strength Concrete,” ACI Materials Journal, V. 94, No. 5, Sept.-Oct. 1997, pp. 417-426.

9. ACI Committee 363, “Report on High-Strength Concrete (ACI 363R-10),” American Concrete Institute, Farmington Hills, MI, 2010, 65 pp.

10. Marvila, M. T.; de Azevedo, A. R. G.; de Matos, P. R.; Monteiro, S. N.; and Vieira, C. M. F., “Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials,” Materials, V. 14, No. 15, 2021, p. 4304. doi: 10.3390/ma14154304

11. Caldarone, M. A., High-Strength Concrete: A Practical Guide, CRC Press, Boca Raton, FL, 2008, 252 pp.

12. Malier, Y., High Performance Concrete: From Material to Structure, CRC Press, London, UK, 1992, 568 pp.

13. Sohail, M. G.; Wang, B.; Jain, A.; Kahraman, R.; Ozerkan, N. G.; Gencturk, B.; Dawood, M.; and Belarbi, A., “Advancements in Concrete Mix Designs: High-Performance and Ultrahigh-Performance Concretes from 1970 to 2016,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 3, 2018, p. 04017310. doi: 10.1061/(ASCE)MT.1943-5533.0002144

14. de Larrard, F. “Structures Granulaires et Formulation des Bétons,” Laboratoire Central des Ponts et Chaussées, Paris, France, 2000.

15. Kwan, A. K. H.; Li, L. G.; and Fung, W. W. S., “Wet Packing of Blended Fine and Coarse Aggregate,” Materials and Structures, V. 45, No. 6, 2012, pp. 817-828. doi: 10.1617/s11527-011-9800-3

16. Aïtcin, P.-C., High Performance Concrete, CRC Press, Boca Raton, FL, 2019, 624 pp.

17. Mazloom, M.; Ramezanianpour, A. A.; and Brooks, J. J., “Effect of Silica Fume on Mechanical Properties of High-Strength Concrete,” Cement and Concrete Composites, ASCE, V. 26, No. 4, 2004, pp. 347-357. doi: 10.1016/S0958-9465(03)00017-9

18. Aïtcin, P.-C., “High-Performance Concrete Demystified,” Concrete International, V. 15, No. 1, Jan. 1993, pp. 21-26.

19. Sengul, O.; Tasdemir, C.; and Tasdemir, M. A., “Influence of Aggregate Type on Mechanical Behavior of Normal- and High-Strength Concretes,” ACI Materials Journal, V. 99, No. 6, Nov.-Dec. 2002, pp. 528-533.

20. Mehta, P., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw Hill Professional, New York, 2005, 683 pp.

21. Page, M. J.; McKenzie, J. E.; Bossuyt, P. M.; Boutron, I.; Hoffmann, T. C.; Mulrow, C. D.; Shamseer, L.; Tetzlaff, J. M.; Akl, E. A.; Brennan, S. E.; Chou, R.; Glanville, J.; Grimshaw, J. M.; Hróbjartsson, A.; Lalu, M. M.; Li, T.; Loder, E. W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L. A.; Stewart, L. A.; Thomas, J.; Tricco, A. C.; Welch, V. A.; Whiting, P.; and Moher, D., “The PRISMA 2020 Statement: An Updated Guideline For Reporting Systematic Reviews,” International Journal of Surgery, V. 88, 2021, p. 105906. doi: 10.1016/j.ijsu.2021.105906

22. Mousavi, S. M., and Ranjbar, M. M., “Experimental Study of the Effect of Silica Fume and Coarse Aggregate Type on the Fracture Characteristics of High-Strength Concrete,” Engineering Fracture Mechanics, V. 258, 2021, p. 108094. doi: 10.1016/j.engfracmech.2021.108094

23. Kristombu Baduge, S.; Mendis, P.; San Nicolas, R.; Rupasinghe, M.; and Portella, J., “Aggregate-Dependent Approach to Formulate and Predict Properties of High-Strength and Very-High-Strength Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 32, No. 4, 2020, p. 04020053. doi: 10.1061/(ASCE)MT.1943-5533.0003055

24. Vishalakshi, K. P.; Revathi, V.; and Sivamurthy Reddy, S., “Effect of Type of Coarse Aggregate on the Strength Properties and Fracture Energy of Normal and High Strength Concrete,” Engineering Fracture Mechanics, V. 194, 2018, pp. 52-60. doi: 10.1016/j.engfracmech.2018.02.029

25. Grabiec, A. M.; Zawal, D.; and Szulc, J., “Influence of Type and Maximum Aggregate Size on Some Properties of High-Strength Concrete Made of Pozzolana Cement in Respect of Binder and Carbon Dioxide Intensity Indexes,” Construction and Building Materials, V. 98, 2015, pp. 17-24. doi: 10.1016/j.conbuildmat.2015.08.108

26. Beushausen, H., and Dittmer, T., “The Influence of Aggregate Type on the Strength and Elastic Modulus of High Strength Concrete,” Construction and Building Materials, V. 74, 2015, pp. 132-139. doi: 10.1016/j.conbuildmat.2014.08.055

27. Uysal, M., “The Influence of Coarse Aggregate Type on Mechanical Properties of Fly Ash Additive Self-Compacting Concrete,” Construction and Building Materials, V. 37, 2012, pp. 533-540. doi: 10.1016/j.conbuildmat.2012.07.085

28. Kılıç, A.; Atiş, C. D.; Teymen, A.; Karahan, O.; Özcan, F.; Bilim, C.; and Özdemir, M., “The Influence of Aggregate Type on the Strength and Abrasion Resistance of High Strength Concrete,” Cement and Concrete Composites, V. 30, No. 4, 2008, pp. 290-296. doi: 10.1016/j.cemconcomp.2007.05.011

29. Al-Oraimi, S. K.; Taha, R.; and Hassan, H. F., “The Effect of the Mineralogy of Coarse Aggregate on the Mechanical Properties of High-Strength Concrete,” Construction and Building Materials, V. 20, No. 7, 2006, pp. 499-503. doi: 10.1016/j.conbuildmat.2004.12.005

30. Wu, K.-R.; Chen, B.; Yao, W.; and Zhang, D., “Effect of Coarse Aggregate Type on Mechanical Properties of High-Performance Concrete,” Cement and Concrete Research, V. 31, No. 10, 2001, pp. 1421-1425. doi: 10.1016/S0008-8846(01)00588-9

31. Cetin, A., and Carrasquillo, R. L., “High-Performance Concrete: Influence of Coarse Aggregates on Mechanical Properties,” ACI Materials Journal, V. 95, No. 3, May-June 1998, pp. 252-261.

32. Penttala, V., and Komonen, J., “Effects of Aggregates and Microfillers on the Flexural Properties of Concrete,” Magazine of Concrete Research, V. 49, No. 179, 1997, pp. 81-97. doi: 10.1680/macr.1997.49.179.81

33. Özturan, T., and Çeçen, C., “Effect of Coarse Aggregate Type on Mechanical Properties of Concretes With Different Strengths,” Cement and Concrete Research, V. 27, No. 2, 1997, pp. 165-170. doi: 10.1016/S0008-8846(97)00006-9

34. Zhou, F. P.; Lydon, F. D.; and Barr, B. I. G., “Effect of Coarse Aggregate on Elastic Modulus and Compressive Strength of High Performance Concrete,” Cement and Concrete Research, V. 25, No. 1, 1995, pp. 177-186. doi: 10.1016/0008-8846(94)00125-I

35. Tighiouart, B.; Benmokrane, B.; and Baalbaki, W., “Caractéristiques mécaniques et élastiques de bétons à haute performance confectionnés avec différents types de gros granulats,” Materials and Structures, V. 27, No. 4, 1994, pp. 211-221. doi: 10.1007/BF02473035

36. Giaccio, G.; Rocco, C.; and Violini, D., “High-Strength Concretes Incorporating Different Coarse Aggregates,” ACI Materials Journal, V. 89, No. 3, May-June 1992, pp. 242-246.

37. Baalbaki, W.; Aitcin, P.-C.; and Ballivy, G., “On Predicting Modulus of Elasticity in High-Strength Concrete,” ACI Materials Journal, V. 89, No. 5, Sept.-Oct. 1992, pp. 517-520.

38. Baalbaki, W.; Benmokrane, B.; and Chaallal, O., “Influence of Coarse Aggregate on Elastic Properties of High-Performance Concrete,” ACI Materials Journal, V. 88, No. 5, Sept.-Oct. 1991, pp. 499-503.

39. Aïtcin, P. C., and Mehta, P. K., “Effect of Coarse Aggregate Characteristics on Mechanical Properties of High-Strength Concrete,” ACI Materials Journal, V. 87, No. 2, Mar.-Apr. 1990, pp. 103-107.

40. Bentz, D. P.; Arnold, J.; Jones, S. Z.; Stutzman, P. E.; Boisclair, M.; Rothfeld, P.; Tanesi, J.; Kim, H.; Munoz, J.; and Beyene, M., Influence of Aggregate Characteristics on Concrete Performance, US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, 2017, 97 pp.

41. Aydin, S.; Yazici, H.; and Yardimci, M. Y., “Effect of Aggregate Type on Mechanical Properties of Reactive Powder Concrete,” ACI Materials Journal, V. 107, No. 5, Sept.-Oct. 2010, pp. 441-449.

42. Lamond, J. F., and Pielert, J. H., Significance of Tests and Properties of Concrete and Concrete-Making Materials, STP 169D, ASTM International, West Conshohocken, PA, 2006, 661 pp.

43. Li, Z., Advanced Concrete Technology, John Wiley & Sons, Inc., New York, Jan. 2011, 521 pp.

44. Guinea, G. V.; El-Sayed, K.; Rocco, C. G.; Elices, M.; and Planas, J., “The Effect of the Bond Between the Matrix and the Aggregates on the Cracking Mechanism and Fracture Parameters of Concrete,” Cement and Concrete Research, V. 32, No. 12, 2002, pp. 1961-1970. doi: 10.1016/S0008-8846(02)00902-X

45. Hong, L.; Gu, X.; and Lin, F., “Influence of Aggregate Surface Roughness on Mechanical Properties of Interface and Concrete,” Construction and Building Materials, V. 65, 2014, pp. 338-349. doi: 10.1016/j.conbuildmat.2014.04.131

46. de Larrard, F., and Le Roy, R., “Relation entre formulation et quelques propriétés mécaniques des bétons à hautes performances,” Materials and Structures, V. 25, No. 8, 1992, pp. 464-475. doi: 10.1007/BF02472636

47. fib, “fib Model Code for Concrete Structures 2010,” International Federation for Structural Concrete, Lausanne, Switzerland, 2013, 434 pp.

48. Noguchi, T.; Tomosawa, F.; Nemati, K.; Chiaia, B. M.; and Fantilli, A. P., “A Practical Equation for Elastic Modulus of Concrete,” ACI Structural Journal, V. 106, No. 5, Sept.-Oct. 2009, pp. 690-696.

49. Tibbetts, C. M.; Perry, M. C.; Ferraro, C. C.; and Hamilton, H. R. T., “Aggregate Correction Factors for Concrete Elastic Modulus Prediction,” ACI Structural Journal, V. 115, No. 4, July-Aug. 2018, pp. 931-940. doi: 10.14359/51701914

50. Iravani, S., “Mechanical Properties of High-Performance Concrete,” ACI Materials Journal, V. 93, No. 5, Sept.-Oct. 1996, pp. 416-426.

51. Rashid, M. A.; Mansur, M. A.; and Paramasivam, P., “Correlations between Mechanical Properties of High-Strength Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 14, No. 3, 2002, pp. 230-238. doi: 10.1061/(ASCE)0899-1561(2002)14:3(230)

52. Maruyama, I., and Sugimoto, S. “Critical Influence of Aggregate Types on the Compressive Strength of Concrete,” 2024. doi: 10.21203/rs.3.rs-3949961/v1

53. Krishnya, S.; Elakneswaran, Y.; and Yoda, Y., “Proposing a Three-Phase Model for Predicting the Mechanical Properties of Mortar and Concrete,” Materials Today Communications, V. 29, 2021, p. 102858. doi: 10.1016/j.mtcomm.2021.102858


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer