Title:
Tensile Properties of Polypropylene and Polyethylene Terephthalate Fiber Bundles in Outdoor Thermal Environment
Author(s):
Zihao Shen and Wenguang Liu
Publication:
Materials Journal
Volume:
122
Issue:
3
Appears on pages(s):
15-24
Keywords:
high temperature; polyethylene terephthalate (PET); polypropylene (PP); tensile properties
DOI:
10.14359/51746711
Date:
5/1/2025
Abstract:
To constitute an alternative to ordinary fiber-reinforced polymer
in the strengthening of existing structures, the tensile properties
of polypropylene (PP) and polyethylene terephthalate (PET) fiber
bundles in outdoor thermal environments (80 and 105°C) were
investigated. The fiber bundles were carefully removed from a
woven textile, and test specimens with a gauge length of 25 mm
were fabricated. Based on the experiments, a Weibull distribution
model of the tensile strength of the PP and PET fiber bundles was
developed. Test results show that exposure temperature and time
significantly affect the tensile strength, rupture strain, and elastic
modulus of the PP and PET fiber bundles. The strength degradation
of PP and PET fiber bundles is not obvious when exposed
to 80°C. In contrast, when exposed to 105°C, their use requires
consideration of mechanical properties’ degradation. This study
provides exact data for the use of PP and PET fiber bundles in
outdoor thermal environments.
Related References:
1. Afroughsabet, V., and Ozbakkaloglu, T., “Mechanical and Durability Properties of High-Strength Concrete Containing Steel and Polypropylene Fibers,” Construction and Building Materials, V. 94, Sept. 2015, pp. 73-82. doi: 10.1016/j.conbuildmat.2015.06.051
2. Zeng, J.-J.; Gao, W.-Y.; Duan, Z.-J.; Bai, Y.-L.; Guo, Y.-C.; and Ouyang, L.-J., “Axial Compressive Behavior of Polyethylene Terephthalate/Carbon FRP-Confined Seawater Sea-Sand Concrete in Circular Columns,” Construction and Building Materials, V. 234, Feb. 2020, Article No. 117383. doi: 10.1016/j.conbuildmat.2019.117383
3. Shukla, S. R., and Mathur, M. R., “Action of Alkali on Polybutylene Terephthalate and Polyethylene Terephthalate Polyesters,” Journal of Applied Polymer Science, V. 75, No. 9, Feb. 2000, pp. 1097-1102. doi: 10.1002/(SICI)1097-4628(20000228)75:93.0.CO;2-7
4. Wardani, A. K.; Ariono, D.; Yespin, Y.; Sihotang, D. R.; and Wenten, I. G., “Preparation of Hydrophilic Polypropylene Membrane by Acid Dipping Technique,” Materials Research Express, V. 6, No. 7, July 2019, Article No. 075308. doi: 10.1088/2053-1591/ab10cf
5. López-Buendía, A. M.; Romero-Sánchez, M. D.; Climent, V.; and Guillem, C., “Surface Treated Polypropylene (PP) Fibres for Reinforced Concrete,” Cement and Concrete Research, V. 54, Dec. 2013, pp. 29-35. doi: 10.1016/j.cemconres.2013.08.004
6. Ju, Y.; Wang, L.; Liu, H.; and Tian, K., “An Experimental Investigation of the Thermal Spalling of Polypropylene-Fibered Reactive Powder Concrete Exposed to Elevated Temperatures,” Science Bulletin, V. 60, No. 23, Dec. 2015, pp. 2022-2040.
7. Hager, I., and Mróz, K., “Role of Polypropylene Fibres in Concrete Spalling Risk Mitigation in Fire and Test Methods of Fibres Effectiveness Evaluation,” Materials, V. 12, No. 23, Dec. 2019, Article No. 3869. doi: 10.3390/ma12233869
8. Cai, R.; Liu, J.-C.; and Ye, H., “Spalling Prevention of Ultrahigh-
Performance Concrete: Comparative Effectiveness of Polyethylene Terephthalate and Polypropylene Fibers,” Journal of Materials in Civil Engineering, ASCE, V. 33, No. 12, Dec. 2021, p. 04021344. doi: 10.1061/(ASCE)MT.1943-5533.0003980
9. Saleem, S.; Pimanmas, A.; Qureshi, M. I.; and Rattanapitikon, W., “Axial Behavior of PET FRP-Confined Reinforced Concrete,” Journal of Composites for Construction, ASCE, V. 25, No. 1, Feb. 2021, p. 04020079. doi: 10.1061/(ASCE)CC.1943-5614.0001092
10. Cerniauskas, G.; Tetta, Z.; Bournas, D. A.; and Bisby, L. A., “Concrete Confinement with TRM versus FRP Jackets at Elevated Temperatures,” Materials and Structures, V. 53, No. 3, June 2020, Article No. 58. doi: 10.1617/s11527-020-01492-x
11. Dai, J.-G.; Bai, Y.-L.; and Teng, J. G., “Behavior and Modeling of Concrete Confined with FRP Composites of Large Deformability,” Journal of Composites for Construction, ASCE, V. 15, No. 6, Dec. 2011, pp. 963-973. doi: 10.1061/(ASCE)CC.1943-5614.0000230
12. Ou, Y.; Zhu, D.; Zhang, H.; Huang, L.; Yao, Y.; Li, G.; and Mobasher, B., “Mechanical Characterization of the Tensile Properties of Glass Fiber and Its Reinforced Polymer (GFRP) Composite under Varying Strain Rates and Temperatures,” Polymers, V. 8, No. 5, May 2016, Article No. 196. doi: 10.3390/polym8050196
13. Wang, Y., and Xia, Y., “Dynamic Tensile Properties of E-Glass, Kevlar49 and Polyvinyl Alcohol Fiber Bundles,” Journal of Materials Science Letters, V. 19, No. 7, Apr. 2000, pp. 583-586. doi: 10.1023/A:1006730312279
14. Sabet, S. M. M.; Akhlaghi, F.; and Eslami-Farsani, R., “The Effect of Thermal Treatment on Tensile Properties of Basalt Fibers,” Journal of Ceramic Science and Technology, V. 6, No. 3, Sept. 2015, pp. 245-248.
15. Bai, Y.-L.; Yan, Z.-W.; Ozbakkaloglu, T.; Han, Q.; Dai, J.-G.; and Zhu, D.-J., “Quasi-Static and Dynamic Tensile Properties of Large-
Rupture-Strain (LRS) Polyethylene Terephthalate Fiber Bundle,” Construction and Building Materials, V. 232, Jan. 2020, Article No. 117241. doi: 10.1016/j.conbuildmat.2019.117241
16. Bai, Y.-L.; Yan, Z.-W.; Ozbakkaloglu, T.; Gao, W.-Y.; and Zeng, J.-J., “Mechanical Behavior of Large-Rupture-Strain (LRS) Polyethylene Naphthalene Fiber Bundles at Different Strain Rates and Temperatures,” Construction and Building Materials, V. 297, Aug. 2021, Article No. 123786. doi: 10.1016/j.conbuildmat.2021.123786
17. Benmokrane, B.; Mousa, S.; Mohamed, K.; and Sayed-Ahmed, M., “Physical, Mechanical, and Durability Characteristics of Newly Developed Thermoplastic GFRP Bars for Reinforcing Concrete Structures,” Construction and Building Materials, V. 276, Mar. 2021, Article No. 122200. doi: 10.1016/j.conbuildmat.2020.122200
18. Wu, X.; Tang, S.; Song, G.; Zhang, Z.; and Tan, D. Q., “High-
Temperature Resistant Polypropylene Films Enhanced by Atomic Layer Deposition,” Nano Express, V. 2, No. 1, Mar. 2021, Article No. 010025. doi: 10.1088/2632-959X/abe518
19. Lu, J.; Chen, J.-H.; Tang, Y.; and Wang, J.-S., “High-Rise Buildings versus Outdoor Thermal Environment in Chongqing,” Sensors, V. 7, No. 10, Oct. 2007, pp. 2183-2200. doi: 10.3390/s7102183
20. Ou, Y., and Zhu, D., “Tensile Behavior of Glass Fiber Reinforced Composite at Different Strain Rates and Temperatures,” Construction and Building Materials, V. 96, Oct. 2015, pp. 648-656. doi: 10.1016/j.conbuildmat.2015.08.044
21. Ríos, J. D.; Cifuentes, H.; Leiva, C.; García, C.; and Alba, M. D., “Behavior of High-Strength Polypropylene Fiber-Reinforced Self-
Compacting Concrete Exposed to High Temperatures,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 11, Nov. 2018, p. 04018271. doi: 10.1061/(ASCE)MT.1943-5533.0002491
22. Abdul Jalil, S.; Anwar, A.; Chou, S. M.; and Tai, K., “Material Yield Strain Identification Using Energy Absorption,” The Journal of Strain
Analysis for Engineering Design, V. 53, No. 6, Aug. 2018, pp. 463-469. doi: 10.1177/0309324718774950
23. Pournamazian Najafabadi, E.; Houshmand Khaneghahi, M.; Ahmadie Amiri, H.; Estekanchi, H. E.; and Ozbakkaloglu, T., “Experimental Investigation and Probabilistic Models for Residual Mechanical Properties of GFRP Pultruded Profiles Exposed to Elevated Temperatures,” Composite Structures, V. 211, Mar. 2019, pp. 610-629.
24. Mittal, A.; Soni, R. K.; Dutt, K.; and Singh, S., “Scanning Electron Microscopic Study of Hazardous Waste Flakes of Polyethylene Terephthalate (PET) by Aminolysis and Ammonolysis,” Journal of Hazardous Materials, V. 178, No. 1-3, June 2010, pp. 390-396. doi: 10.1016/j.jhazmat.2010.01.092
25. Akolekar, D. B.; Nair, S.; Adsul, S.; and Virkar, S., “Functionalization of Polypropylene at High Temperature Under Oxidative/Inert Environment,” Journal of Applied Polymer Science, V. 123, No. 1, Jan. 2012, pp. 1-11. doi: 10.1002/app.34442
26. Hirai, T.; Matsunaga, T.; Sato, N.; Katagiri, Y.; Kawada, J.; and Usuki, A., “High-Temperature Crystallization of Immiscible Polymer Blends Induced by the Shear Flow in Injection Molding,” Polymer Crystallization, V. 2, No. 4, 2019, Article No. e10069. doi: 10.1002/pcr2.10069
27. Chen, X.; Zhang, Z.; Chen, B.; Liu, C.; Zhang, S.; Cao, W.; and Wang, Z., “Crystalline Grain Refinement Toughened Isotactic Polypropylene Through Rapid Quenching of Stretched Melt,” Polymer, V. 216, Feb. 2021, Article No. 123435. doi: 10.1016/j.polymer.2021.123435
28. Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; and Gutiérrez, A., “Influence of High Temperatures on PET-Concrete Properties,” Macromolecular Symposia, V. 286, No. 1, Nov. 2009, pp. 195-202. doi: 10.1002/masy.200951224