Tensile Properties of Polypropylene and Polyethylene Terephthalate Fiber Bundles in Outdoor Thermal Environment

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Tensile Properties of Polypropylene and Polyethylene Terephthalate Fiber Bundles in Outdoor Thermal Environment

Author(s): Zihao Shen and Wenguang Liu

Publication: Materials Journal

Volume: 122

Issue: 3

Appears on pages(s): 15-24

Keywords: high temperature; polyethylene terephthalate (PET); polypropylene (PP); tensile properties

DOI: 10.14359/51746711

Date: 5/1/2025

Abstract:
To constitute an alternative to ordinary fiber-reinforced polymer in the strengthening of existing structures, the tensile properties of polypropylene (PP) and polyethylene terephthalate (PET) fiber bundles in outdoor thermal environments (80 and 105°C) were investigated. The fiber bundles were carefully removed from a woven textile, and test specimens with a gauge length of 25 mm were fabricated. Based on the experiments, a Weibull distribution model of the tensile strength of the PP and PET fiber bundles was developed. Test results show that exposure temperature and time significantly affect the tensile strength, rupture strain, and elastic modulus of the PP and PET fiber bundles. The strength degradation of PP and PET fiber bundles is not obvious when exposed to 80°C. In contrast, when exposed to 105°C, their use requires consideration of mechanical properties’ degradation. This study provides exact data for the use of PP and PET fiber bundles in outdoor thermal environments.

Related References:

1. Afroughsabet, V., and Ozbakkaloglu, T., “Mechanical and Durability Properties of High-Strength Concrete Containing Steel and Polypropylene Fibers,” Construction and Building Materials, V. 94, Sept. 2015, pp. 73-82. doi: 10.1016/j.conbuildmat.2015.06.051

2. Zeng, J.-J.; Gao, W.-Y.; Duan, Z.-J.; Bai, Y.-L.; Guo, Y.-C.; and Ouyang, L.-J., “Axial Compressive Behavior of Polyethylene Terephthalate/Carbon FRP-Confined Seawater Sea-Sand Concrete in Circular Columns,” Construction and Building Materials, V. 234, Feb. 2020, Article No. 117383. doi: 10.1016/j.conbuildmat.2019.117383

3. Shukla, S. R., and Mathur, M. R., “Action of Alkali on Polybutylene Terephthalate and Polyethylene Terephthalate Polyesters,” Journal of Applied Polymer Science, V. 75, No. 9, Feb. 2000, pp. 1097-1102. doi: 10.1002/(SICI)1097-4628(20000228)75:93.0.CO;2-7

4. Wardani, A. K.; Ariono, D.; Yespin, Y.; Sihotang, D. R.; and Wenten, I. G., “Preparation of Hydrophilic Polypropylene Membrane by Acid Dipping Technique,” Materials Research Express, V. 6, No. 7, July 2019, Article No. 075308. doi: 10.1088/2053-1591/ab10cf

5. López-Buendía, A. M.; Romero-Sánchez, M. D.; Climent, V.; and Guillem, C., “Surface Treated Polypropylene (PP) Fibres for Reinforced Concrete,” Cement and Concrete Research, V. 54, Dec. 2013, pp. 29-35. doi: 10.1016/j.cemconres.2013.08.004

6. Ju, Y.; Wang, L.; Liu, H.; and Tian, K., “An Experimental Investigation of the Thermal Spalling of Polypropylene-Fibered Reactive Powder Concrete Exposed to Elevated Temperatures,” Science Bulletin, V. 60, No. 23, Dec. 2015, pp. 2022-2040.

7. Hager, I., and Mróz, K., “Role of Polypropylene Fibres in Concrete Spalling Risk Mitigation in Fire and Test Methods of Fibres Effectiveness Evaluation,” Materials, V. 12, No. 23, Dec. 2019, Article No. 3869. doi: 10.3390/ma12233869

8. Cai, R.; Liu, J.-C.; and Ye, H., “Spalling Prevention of Ultrahigh-

Performance Concrete: Comparative Effectiveness of Polyethylene Terephthalate and Polypropylene Fibers,” Journal of Materials in Civil Engineering, ASCE, V. 33, No. 12, Dec. 2021, p. 04021344. doi: 10.1061/(ASCE)MT.1943-5533.0003980

9. Saleem, S.; Pimanmas, A.; Qureshi, M. I.; and Rattanapitikon, W., “Axial Behavior of PET FRP-Confined Reinforced Concrete,” Journal of Composites for Construction, ASCE, V. 25, No. 1, Feb. 2021, p. 04020079. doi: 10.1061/(ASCE)CC.1943-5614.0001092

10. Cerniauskas, G.; Tetta, Z.; Bournas, D. A.; and Bisby, L. A., “Concrete Confinement with TRM versus FRP Jackets at Elevated Temperatures,” Materials and Structures, V. 53, No. 3, June 2020, Article No. 58. doi: 10.1617/s11527-020-01492-x

11. Dai, J.-G.; Bai, Y.-L.; and Teng, J. G., “Behavior and Modeling of Concrete Confined with FRP Composites of Large Deformability,” Journal of Composites for Construction, ASCE, V. 15, No. 6, Dec. 2011, pp. 963-973. doi: 10.1061/(ASCE)CC.1943-5614.0000230

12. Ou, Y.; Zhu, D.; Zhang, H.; Huang, L.; Yao, Y.; Li, G.; and Mobasher, B., “Mechanical Characterization of the Tensile Properties of Glass Fiber and Its Reinforced Polymer (GFRP) Composite under Varying Strain Rates and Temperatures,” Polymers, V. 8, No. 5, May 2016, Article No. 196. doi: 10.3390/polym8050196

13. Wang, Y., and Xia, Y., “Dynamic Tensile Properties of E-Glass, Kevlar49 and Polyvinyl Alcohol Fiber Bundles,” Journal of Materials Science Letters, V. 19, No. 7, Apr. 2000, pp. 583-586. doi: 10.1023/A:1006730312279

14. Sabet, S. M. M.; Akhlaghi, F.; and Eslami-Farsani, R., “The Effect of Thermal Treatment on Tensile Properties of Basalt Fibers,” Journal of Ceramic Science and Technology, V. 6, No. 3, Sept. 2015, pp. 245-248.

15. Bai, Y.-L.; Yan, Z.-W.; Ozbakkaloglu, T.; Han, Q.; Dai, J.-G.; and Zhu, D.-J., “Quasi-Static and Dynamic Tensile Properties of Large-

Rupture-Strain (LRS) Polyethylene Terephthalate Fiber Bundle,” Construction and Building Materials, V. 232, Jan. 2020, Article No. 117241. doi: 10.1016/j.conbuildmat.2019.117241

16. Bai, Y.-L.; Yan, Z.-W.; Ozbakkaloglu, T.; Gao, W.-Y.; and Zeng, J.-J., “Mechanical Behavior of Large-Rupture-Strain (LRS) Polyethylene Naphthalene Fiber Bundles at Different Strain Rates and Temperatures,” Construction and Building Materials, V. 297, Aug. 2021, Article No. 123786. doi: 10.1016/j.conbuildmat.2021.123786

17. Benmokrane, B.; Mousa, S.; Mohamed, K.; and Sayed-Ahmed, M., “Physical, Mechanical, and Durability Characteristics of Newly Developed Thermoplastic GFRP Bars for Reinforcing Concrete Structures,” Construction and Building Materials, V. 276, Mar. 2021, Article No. 122200. doi: 10.1016/j.conbuildmat.2020.122200

18. Wu, X.; Tang, S.; Song, G.; Zhang, Z.; and Tan, D. Q., “High-

Temperature Resistant Polypropylene Films Enhanced by Atomic Layer Deposition,” Nano Express, V. 2, No. 1, Mar. 2021, Article No. 010025. doi: 10.1088/2632-959X/abe518

19. Lu, J.; Chen, J.-H.; Tang, Y.; and Wang, J.-S., “High-Rise Buildings versus Outdoor Thermal Environment in Chongqing,” Sensors, V. 7, No. 10, Oct. 2007, pp. 2183-2200. doi: 10.3390/s7102183

20. Ou, Y., and Zhu, D., “Tensile Behavior of Glass Fiber Reinforced Composite at Different Strain Rates and Temperatures,” Construction and Building Materials, V. 96, Oct. 2015, pp. 648-656. doi: 10.1016/j.conbuildmat.2015.08.044

21. Ríos, J. D.; Cifuentes, H.; Leiva, C.; García, C.; and Alba, M. D., “Behavior of High-Strength Polypropylene Fiber-Reinforced Self-

Compacting Concrete Exposed to High Temperatures,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 11, Nov. 2018, p. 04018271. doi: 10.1061/(ASCE)MT.1943-5533.0002491

22. Abdul Jalil, S.; Anwar, A.; Chou, S. M.; and Tai, K., “Material Yield Strain Identification Using Energy Absorption,” The Journal of Strain

Analysis for Engineering Design, V. 53, No. 6, Aug. 2018, pp. 463-469. doi: 10.1177/0309324718774950

23. Pournamazian Najafabadi, E.; Houshmand Khaneghahi, M.; Ahmadie Amiri, H.; Estekanchi, H. E.; and Ozbakkaloglu, T., “Experimental Investigation and Probabilistic Models for Residual Mechanical Properties of GFRP Pultruded Profiles Exposed to Elevated Temperatures,” Composite Structures, V. 211, Mar. 2019, pp. 610-629.

24. Mittal, A.; Soni, R. K.; Dutt, K.; and Singh, S., “Scanning Electron Microscopic Study of Hazardous Waste Flakes of Polyethylene Terephthalate (PET) by Aminolysis and Ammonolysis,” Journal of Hazardous Materials, V. 178, No. 1-3, June 2010, pp. 390-396. doi: 10.1016/j.jhazmat.2010.01.092

25. Akolekar, D. B.; Nair, S.; Adsul, S.; and Virkar, S., “Functionalization of Polypropylene at High Temperature Under Oxidative/Inert Environment,” Journal of Applied Polymer Science, V. 123, No. 1, Jan. 2012, pp. 1-11. doi: 10.1002/app.34442

26. Hirai, T.; Matsunaga, T.; Sato, N.; Katagiri, Y.; Kawada, J.; and Usuki, A., “High-Temperature Crystallization of Immiscible Polymer Blends Induced by the Shear Flow in Injection Molding,” Polymer Crystallization, V. 2, No. 4, 2019, Article No. e10069. doi: 10.1002/pcr2.10069

27. Chen, X.; Zhang, Z.; Chen, B.; Liu, C.; Zhang, S.; Cao, W.; and Wang, Z., “Crystalline Grain Refinement Toughened Isotactic Polypropylene Through Rapid Quenching of Stretched Melt,” Polymer, V. 216, Feb. 2021, Article No. 123435. doi: 10.1016/j.polymer.2021.123435

28. Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; and Gutiérrez, A., “Influence of High Temperatures on PET-Concrete Properties,” Macromolecular Symposia, V. 286, No. 1, Nov. 2009, pp. 195-202. doi: 10.1002/masy.200951224


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer