International Concrete Abstracts Portal

  


Title: Curvilinearity Effect on Flexural and Shear Strengths of Vertically Curved Glass Fiber-Reinforced Polymer- Reinforced Concrete Flexural Members

Author(s): Seyed Mohammad Hosseini, Salaheldin Mousa, Hamdy M. Mohamed, and Brahim Benmokrane

Publication: Structural Journal

Volume: 122

Issue: 3

Appears on pages(s): 33-47

Keywords: critical shear crack theory (CSCT); curvilinear reinforced concrete (RC) members; design codes; experimental and analytical studies; flexural strength; glass fiber-reinforced polymer (GFRP) bars; Modified Compression Field Theory (MCFT); parametric studie

DOI: 10.14359/51745638

Date: 5/1/2025

Abstract:
The geometry of arched (vertically curved) reinforced concrete (RC) members contributes to the development of additional stresses, affecting their flexural and shear strengths. This aspect of curvilinear RC members reinforced with glass fiber-reinforced polymer (GFRP) bars has not been reported in the literature. In addition, no specific design recommendations consider the effect of curvilinearity on the flexural and shear strengths of curved GFRP-RC members. This study has performed pioneering work in developing models to predict the flexural and shear strengths of curvilinear GFRP-RC members, with a focus on precast concrete tunnel lining segments. Eleven full-scale curvilinear GFRPreinforced tunnel segment specimens were tested under bending load as the experimental database. Then, a model was developed for predicting the flexural strength of curvilinear GFRP-RC members. This was followed by the development of two shear-strength prediction models based on the Modified Compression Field Theory (MCFT) and critical shear crack theory (CSCT). After comparing the experimental and analytical results, a parametric study was performed to evaluate the effect of different parameters on the flexural and shear strengths of curvilinear GFRP-reinforced members. The results indicate that neglecting the curvilinearity effect led to a 17% overestimation of the flexural strength, while the proposed models could predict the flexural strength of the specimens accurately. The proposed models based on the MCFT—referred to as the semi-simplified Modified Compression Field Theory (SSMCFT) and the improved simplified Modified Compression Field Theory (ISMCFT)—predicted the shear strength of the specimens with 28% conservativeness. In addition, the modified critical shear crack theory (MCSCT) model was 10% conservative in predicting the shear strength of curvilinear GFRP-RC members.


ALSO AVAILABLE IN:

Electronic Structural Journal



  


ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer