Title:
Structural Performance of Geopolymer Concrete: Bond, Flexural, Shear, and Axial Strengths
Author(s):
Giwan Noh, Myoungsu Shin, Keun-Hyeok Yang, and Thomas H.-K. Kang
Publication:
Structural Journal
Volume:
122
Issue:
2
Appears on pages(s):
145-160
Keywords:
eco-friendly material; geopolymer; geopolymer concrete (GPC); structural performance
DOI:
10.14359/51744396
Date:
3/1/2025
Abstract:
Portland cement has played a significant role in the construction of major infrastructure and building structures. However, in light of the substantial CO2 emissions associated with its production, there is a growing concern about environmental issues. Accordingly, the development of eco-friendly alternatives is actively underway. Geopolymer represents a class of inorganic polymers formed through a chemical interaction between solid aluminosilicate powder with alkali hydroxide and/or alkali silicate compounds. Concrete made with geopolymers, as an alternative to portland cement, generally demonstrates comparable physical and durability characteristics to ordinary portland cement (OPC) concrete. Research on the material properties of geopolymer concrete (GPC) has made extensive progress. However, the number of large-scale tests conducted to assess its structural performance is still insufficient. Additionally, there is a shortage of comprehensive studies that compile and analyze all the structural experiments conducted thus far to evaluate GPC’s potential. Therefore, this study aimed to compile and analyze a number of bond, flexural, shear, and axial strength tests of GPC to assess its potential as a substitute for OPC and identify its distinctive characteristics compared to OPC. As a result, it is considered that GPC can be used as a substitute for OPC without any structural safety issues. However, caution is needed in terms of deflection and ductility, and additional experiments are deemed necessary in the aspect of compressive strength of large-scale members.
Related References:
1. Zho, Y.-K., “Effect of Chemical Properties of Fly Ash on the Compressive Strength of Geopolymer,” PhD dissertation, Sungkyunkwan University, Suwon, Gyeonggi, Korea, 2019. (in Korean)
2. Davidovits, J., “High-Alkali Cements for 21st Century Concretes,” Concrete Technology: Past, Present, and Future: Proceedings of V. Mohan Malhotra Symposium, SP-144, P. K. Mehta, ed., American Concrete Institute, Farmington Hills, MI, 1994, pp. 383-397. doi: 10.14359/4523
3. Malhotra, V. M., “Introduction: Sustainable Development and Concrete Technology,” Concrete International, V. 24, No. 7, July 2002, p. 22.
4. Lee, N. K., and Lee, H. K., “Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature,” Construction and Building Materials, V. 47, Oct. 2013, pp. 1201-1209. doi: 10.1016/j.conbuildmat.2013.05.107
5. Davidovits, J., “Geopolymers: Inorganic Polymeric New Materials,” Journal of Thermal Analysis and Calorimetry, V. 37, No. 8, Aug. 1991, pp. 1633-1656. doi: 10.1007/BF01912193
6. Rangan, B. V., “Fly Ash-Based Geopolymer Concrete,” Research Report GC 4, Curtin University of Technology, Perth, WA, Australia, 2008, 44 pp.
7. Ma, C.-K.; Awang, A. Z.; and Omar, W., “Structural and Material Performance of Geopolymer Concrete: A Review,” Construction and Building Materials, V. 186, Oct. 2018, pp. 90-102. doi: 10.1016/j.conbuildmat.2018.07.111
8. Verma, M.; Dev, N.; Rahman, I.; Nigam, M.; Ahmed, M.; and Mallick, J., “Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries,” Crystals, V. 12, No. 4, Apr. 2022, Article No. 514. doi: 10.3390/cryst12040514
9. Sofi, M.; van Deventer, J. S. J.; Mendis, P. A.; and Lukey, G. C., “Engineering Properties of Inorganic Polymer Concretes (IPCs),” Cement and Concrete Research, V. 37, No. 2, Feb. 2007, pp. 251-257. doi: 10.1016/j.cemconres.2006.10.008
10. Nath, P., and Sarker, P. K., “Flexural Strength and Elastic Modulus of Ambient-Cured Blended Low-Calcium Fly Ash Geopolymer Concrete,” Construction and Building Materials, V. 130, Jan. 2017, pp. 22-31. doi: 10.1016/j.conbuildmat.2016.11.034
11. Soutsos, M.; Boyle, A. P.; Vinai, R.; Hadjierakleous, A.; and Barnett, S. J., “Factors Influencing the Compressive Strength of Fly Ash Based Geopolymers,” Construction and Building Materials, V. 110, May 2016, pp. 355-368. doi: 10.1016/j.conbuildmat.2015.11.045
12. Castillo, H.; Collado, H.; Droguett, T.; Sánchez, S.; Vesely, M.; Garrido, P.; and Palma, S., “Factors Affecting the Compressive Strength of Geopolymers: A Review,” Minerals, V. 11, No. 12, Dec. 2021, Article No. 1317. doi: 10.3390/min11121317
13. RSN 336-84, “Republican Building Norms for Production and Use of Slag Alkaline Binders, Concretes and Structures,” The National Committee Ukrainian Republic of the USSR for Construction, Kyiv, Ukraine, 1984.
14. PAS 8820:2016, “Construction Materials. Alkali-Activated Cementitious Material and Concrete. Specification (Withdrawn 2024),” British Standards Institution, London, UK, 2016, 58 pp.
15. GB/T 29423-2012, “Alkali-Activated Slag-Fly Ash Concrete for Anticorrosive Cement Products,” Standardization Administration of the People’s Republic of China, Beijing, China, 2012.
16. Van Deventer, J. S. J.; Provis, J. L.; and Duxson, P., “Technical and Commercial Progress in the Adoption of Geopolymer Cement,” Minerals Engineering, V. 29, Mar. 2012, pp. 89-104. doi: 10.1016/j.mineng.2011.09.009
17. Li, N.; Shi, C.; Zhang, Z.; Wang, H.; and Liu, Y., “A Review on Mixture Design Methods for Geopolymer Concrete,” Composites Part B: Engineering, V. 178, Dec. 2019, Article No. 107490. doi: 10.1016/j.compositesb.2019.107490
18. Baktheer, A.; Spartali, H.; Hegger, J.; and Chudoba, R., “High-Cycle Fatigue of Bond in Reinforced High-Strength Concrete under Push-in Loading Characterized Using the Modified Beam-End Test,” Cement and Concrete Composites, V. 118, Apr. 2021, Article No. 103978. doi: 10.1016/j.cemconcomp.2021.103978
19. Joint ACI-ASCE Committee 408, “Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03),” American Concrete Institute, Farmington Hills, MI, 2003, 49 pp.
20. Abdulrahman, H.; Muhamad, R.; Visintin, P.; and Shukri, A. A., “Mechanical Properties and Bond Stress-Slip Behaviour of Fly Ash Geopolymer Concrete,” Construction and Building Materials, V. 327, Apr. 2022, Article No. 126909. doi: 10.1016/j.conbuildmat.2022.126909
21. Adak, D.; Sarkar, M.; and Mandal, S., “Structural Performance of Nano-Silica Modified Fly-Ash Based Geopolymer Concrete,” Construction and Building Materials, V. 135, Mar. 2017, pp. 430-439. doi: 10.1016/j.conbuildmat.2016.12.111
22. Al-Azzawi, M.; Yu, T.; and Hadi, M. N. S., “Factors Affecting the Bond Strength Between the Fly Ash-Based Geopolymer Concrete and Steel Reinforcement,” Structures, V. 14, June 2018, pp. 262-272. doi: 10.1016/j.istruc.2018.03.010
23. Albidah, A.; Altheeb, A.; Alrshoudi, F.; Abadel, A.; Abbas, H.; and Al-Salloum, Y., “Bond Performance of GFRP and Steel Rebars Embedded in Metakaolin Based Geopolymer Concrete,” Structures, V. 27, Oct. 2020, pp. 1582-1593. doi: 10.1016/j.istruc.2020.07.048
24. Bilek, V.; Bonczková, S.; Hurta, J.; Pytlík, D.; and Mrovec, M., “Bond Strength Between Reinforcing Steel and Different Types of Concrete,” Procedia Engineering, V. 190, 2017, pp. 243-247. doi: 10.1016/j.proeng.2017.05.333
25. Boopalan, C., and Rajamane, N. P., “An Investigation of Bond Strength of Reinforcing Bars in Fly Ash and GGBS Based Geopolymer Concrete,” MATEC Web of Conferences, V. 97, 2017, Article No. 01035. doi: 10.1051/matecconf/20179701035
26. Castel, A., and Foster, S. J., “Bond Strength between Blended Slag and Class F Fly Ash Geopolymer Concrete with Steel Reinforcement,” Cement and Concrete Research, V. 72, June 2015, pp. 48-53. doi: 10.1016/j.cemconres.2015.02.016
27. Doguparti, R. S., “A Study on Bond Strength of Geopolymer Concrete,” International Journal of Civil and Environmental Engineering, V. 9, No. 3, 2015, pp. 355-358. doi: 10.5281/zenodo.1107936
28. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N. S., “Experimental Investigation on the Effect of Corrosion on the Bond Between Reinforcing Steel Bars and Fibre Reinforced Geopolymer Concrete,” Structures, V. 14, June 2018, pp. 251-261. doi: 10.1016/j.istruc.2018.03.013
29. Fernández-Jiménez, A. M.; Palomo, A.; and López-Hombrados, C., “Engineering Properties of Alkali-Activated Fly Ash Concrete,” ACI Materials Journal, V. 103, No. 2, Mar.-Apr. 2006, pp. 106-112. doi: 10.14359/15261
30. Jiang, X.; Xiao, R.; Zhang, M.; Hu, W.; Bai, Y.; and Huang, B., “A Laboratory Investigation of Steel to Fly Ash-Based Geopolymer Paste Bonding Behavior after Exposure to Elevated Temperatures,” Construction and Building Materials, V. 254, Sept. 2020, Article No. 119267. doi: 10.1016/j.conbuildmat.2020.119267
31. Zerfu, K., and Ekaputri, J. J., “Bond Strength in PVA Fibre Reinforced Fly Ash-Based Geopolymer Concrete,” Magazine of Civil Engineering, V. 101, No. 1, 2021, Article No. 10105. doi: 10.34910/MCE.101.5
32. Kim, J. S., and Park, J., “An Experimental Evaluation of Development Length of Reinforcements Embedded in Geopolymer Concrete,” Applied Mechanics and Materials, V. 578-579, July 2014, pp. 441-444. doi: 10.4028/www.scientific.net/AMM.578-579.441
33. Kumar, S.; Das, C. S.; Lao, J.; Alrefaei, Y.; and Dai, J.-G., “Effect of Sand Content on Bond Performance of Engineered Geopolymer Composites (EGC) Repair Material,” Construction and Building Materials, V. 328, Apr. 2022, Article No. 127080. doi: 10.1016/j.conbuildmat.2022.127080
34. Laskar, S. M., and Talukdar, S., “Preparation and Tests for Workability, Compressive and Bond Strength of Ultra-Fine Slag Based Geopolymer as Concrete Repairing Agent,” Construction and Building Materials, V. 154, Nov. 2017, pp. 176-190. doi: 10.1016/j.conbuildmat.2017.07.187
35. Ling, Y.; Wang, K.; Li, W.; Shi, G.; and Lu, P., “Effect of Slag on the Mechanical Properties and Bond Strength of Fly Ash-Based Engineered Geopolymer Composites,” Composites Part B: Engineering, V. 164, May 2019, pp. 747-757. doi: 10.1016/j.compositesb.2019.01.092
36. Maranan, G. B.; Manalo, A. C.; Karunasena, W.; and Benmokrane, B., “Pullout Behaviour of GFRP Bars with Anchor Head in Geopolymer Concrete,” Composite Structures, V. 132, Nov. 2015, pp. 1113-1121. doi: 10.1016/j.compstruct.2015.07.021
37. Maranan, G.; Manalo, A.; Karunasena, K.; and Benmokrane, B., “Bond Stress-Slip Behavior: Case of GFRP Bars in Geopolymer Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 1, Jan. 2015, p. 04014116. doi: 10.1061/(ASCE)MT.1943-5533.0001046
38. Mo, K. H.; Yeap, K. W.; Alengaram, U. J.; Jumaat, M. Z.; and Bashar, I. I., “Bond Strength Evaluation of Palm Oil Fuel Ash-Based Geopolymer Normal Weight and Lightweight Concretes with Steel Reinforcement,” Journal of Adhesion Science and Technology, V. 32, No. 1, 2018, pp. 19-35. doi: 10.1080/01694243.2017.1336195
39. Pandurangan, K.; Thennavan, M.; and Muthadhi, A., “Studies on Effect of Source of Flyash on the Bond Strength of Geopolymer Concrete,” Materials Today: Proceedings, V. 5, No. 5, Part 2, 2018, pp. 12725-12733. doi: 10.1016/j.matpr.2018.02.256
40. Paswan, R.; Rahman, M. R.; Singh, S. K.; and Singh, B., “Bond Behavior of Reinforcing Steel Bar and Geopolymer Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 32, No. 7, July 2020, p. 04020167. doi: 10.1061/(ASCE)MT.1943-5533.0003237
41. Peng, K.-D.; Zeng, J.-J.; Huang, B.-T.; Huang, J.-Q.; Zhuge, Y.; and Dai, J.-G., “Bond Performance of FRP Bars in Plain and Fiber-Reinforced Geopolymer Under Pull-Out Loading,” Journal of Building Engineering, V. 57, Oct. 2022, Article No. 104893. doi: 10.1016/j.jobe.2022.104893
42. Rahman, S. K., and Al-Ameri, R., “Experimental Investigation and Artificial Neural Network Based Prediction of Bond Strength in Self-Compacting Geopolymer Concrete Reinforced with Basalt FRP Bars,” Applied Sciences, V. 11, No. 11, June 2021, Article No. 4889. doi: 10.3390/app11114889
43. Romanazzi, V.; Leone, M.; Aiello, M. A.; and Pecce, M. R., “Bond Behavior of Geopolymer Concrete with Steel and GFRP Bars,” Composite Structures, V. 300, Nov. 2022, Article No. 116150. doi: 10.1016/j.compstruct.2022.116150
44. Sajjad, U.; Sheikh, M. N.; and Hadi, M. N. S., “Improvement in Bond Strength of Steel Bar in Geopolymer Concrete by Adding Graphene Nanoplatelets,” Journal of Materials in Civil Engineering, ASCE, V. 35, No. 6, June 2023, p. 04023115. doi: 10.1061/JMCEE7.MTENG-14093
45. Sarker, P. K., “Bond Strength of Reinforcing Steel Embedded in Fly Ash-Based Geopolymer Concrete,” Materials and Structures, V. 44, No. 5, June 2011, pp. 1021-1030. doi: 10.1617/s11527-010-9683-8
46. Sofi, M.; van Deventer, J. S. J.; Mendis, P. A.; and Lukey, G. C., “Bond Performance of Reinforcing Bars in Inorganic Polymer Concrete (IPC),” Journal of Materials Science, V. 42, No. 9, May 2007, pp. 3107-3116. doi: 10.1007/s10853-006-0534-5
47. Songpiriyakij, S.; Pulngern, T.; Pungpremtrakul, P.; and Jaturapitakkul, C., “Anchorage of Steel Bars in Concrete by Geopolymer Paste,” Materials & Design, V. 32, No. 5, May 2011, pp. 3021-3028. doi: 10.1016/j.matdes.2011.01.048
48. Tekle, B. H.; Khennane, A.; and Kayali, O., “Bond Properties of Sand-Coated GFRP Bars with Fly Ash–Based Geopolymer Concrete,” Journal of Composites for Construction, ASCE, V. 20, No. 5, Oct. 2016, p. 04016025. doi: 10.1061/(ASCE)CC.1943-5614.0000685
49. Topark-Ngarm, P.; Chindaprasirt, P.; and Sata, V., “Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete,” Journal of Materials in Civil Engineering, V. 27, No. 7, July 2015, p. 04014198. doi: 10.1061/(ASCE)MT.1943-5533.0001157
50. Trabacchin, G.; Sebastian, W.; and Zhang, M., “Experimental and Analytical Study of Bond between Basalt FRP Bars and Geopolymer Concrete,” Construction and Building Materials, V. 315, Jan. 2022, Article No. 125461. doi: 10.1016/j.conbuildmat.2021.125461
51. Zhang, H. Y.; Kodur, V.; Wu, B.; Yan, J.; and Yuan, Z. S., “Effect of Temperature on Bond Characteristics of Geopolymer Concrete,” Construction and Building Materials, V. 163, Feb. 2018, pp. 277-285. doi: 10.1016/j.conbuildmat.2017.12.043
52. Yang, T.; Xu, S.; Liu, Z.; Li, J.; Wu, P.; Yang, Y.; and Wu, C., “Experimental and Numerical Investigation of Bond Behavior between Geopolymer Based Ultra-High-Performance Concrete and Steel Bars,” Construction and Building Materials, V. 345, Aug. 2022, Article No. 128220. doi: 10.1016/j.conbuildmat.2022.128220
53. Adak, D., and Mandal, S., “Strength and Durability Performance of Fly Ash–Based Process-Modified Geopolymer Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 9, Sept. 2019, p. 04019174. doi: 10.1061/(ASCE)MT.1943-5533.0002793
54. Zheng, Y., and Xiao, Y., “A Comparative Study on Strength, Bond-Slip Performance and Microstructure of Geopolymer/Ordinary Recycled Brick Aggregate Concrete,” Construction and Building Materials, V. 366, Feb. 2023, Article No. 130257. doi: 10.1016/j.conbuildmat.2022.130257
55. Nuroji; Primadyas, D. H.; Nurhuda, I.; and Muslikh, “The Comparison of Bond Strength between Geopolymer Concrete and OPC Concrete for Plain Reinforcing Bars,” MATEC Web of Conferences, V. 159, 2018, Article No. 01017. doi: 10.1051/matecconf/201815901017
56. Sayyad, A. S., and Patankar, S. V., “Effect of Steel Fibres and Low Calcium Fly Ash on Mechanical and Elastic Properties of Geopolymer Concrete Composites,” Indian Journal of Materials Science, V. 2013, No. 1, 2013, Article No. 357563. doi: 10.1155/2013/357563
57. Chinapaiya, B.; Parshwanath, R. N.; Radhakrishnan, J.; and Thirunavukkarasu, R., “Adhesive Bond Strength of Steel Bars Embedded in Fly Ash-GGBS-based Geopolymer Concrete,” Journal of Advanced Concrete Technology, V. 18, No. 11, 2020, pp. 716-729. doi: 10.3151/jact.18.716
58. Zhao, J.; Wang, S.; Wang, Z.; Wang, K.; and Fu, C., “Bond Performance between FRP Bars and Geopolymer Concrete after Elevated Temperature Exposure,” Construction and Building Materials, V. 384, June 2023, Article No. 131476. doi: 10.1016/j.conbuildmat.2023.131476
59. Le, H.-B.; Bui, Q.-B.; Nguyen, D.-M.; and Cheng, S., “Assessing the Mechanical Properties of Geopolymer Recycled Aggregate Concrete: Flexural Strength, Bond Strength and Thermo-Mechanical Behaviour,” Journal of the Australian Ceramic Society, V. 58, No. 5, Dec. 2022, pp. 1649-1665. doi: 10.1007/s41779-022-00801-7
60. Petcherdchoo, A.; Hongubon, T.; Thanasisathit, N.; Punthutaecha, K.; and Jang, S.-H., “Effect of Curing Time on Bond Strength between Reinforcement and Fly-ash Geopolymer Concrete,” Applied Science and Engineering Progress, V. 13, No. 2, 2020, pp. 127-135. doi: 10.14416/j.asep.2020.03.006
61. Cui, Y.; Qu, S.; Bao, J.; and Zhang, P., “Bond Performance of Steel Bar and Fly Ash-Based Geopolymer Concrete in Beam End Tests,” Polymers, V. 14, No. 10, May 2022, Article No. 2012. doi: 10.3390/polym14102012
62. Chang, E. H., “Shear and Bond Behaviour of Reinforced Fly Ash-Based Geopolymer Concrete Beams,” PhD thesis, Curtin University of Technology, Perth, WA, Australia, 2009, 409 pp.
63. Tekle, B. H.; Khennane, A.; and Kayali, O., “Bond of Spliced GFRP Reinforcement Bars in Alkali Activated Cement Concrete,” Engineering Structures, V. 147, Sept. 2017, pp. 740-751. doi: 10.1016/j.engstruct.2017.06.040
64. Ma, Z.; Yue, Q.; and Chen, Z., “A Beam Test Study on the Bond Performance between Epoxy-Coated Reinforcement and Geopolymer Concrete,” Buildings, V. 13, No. 2, Feb. 2023, Article No. 430. doi: 10.3390/buildings13020430
65. Nawy, E. G., Reinforced Concrete: A Fundamental Approach, sixth edition, Pearson Prentice Hall, Upper Saddle River, NJ, 2008, 944 pp.
66. Ahmed, H. Q.; Jaf, D. K.; and Yaseen, S. A., “Flexural Strength and Failure of Geopolymer Concrete Beams Reinforced with Carbon Fibre-Reinforced Polymer Bars,” Construction and Building Materials, V. 231, Jan. 2020, Article No. 117185. doi: 10.1016/j.conbuildmat.2019.117185
67. Akduman, Ş.; Kocaer, O.; Aldemir, A.; Şahmaran, M.; Yıld��rım, G.; Almahmood, H.; and Ashour, A., “Experimental Investigations on the Structural Behaviour of Reinforced Geopolymer Beams Produced from Recycled Construction Materials,” Journal of Building Engineering, V. 41, Sept. 2021, Article No. 102776. doi: 10.1016/j.jobe.2021.102776
68. Aldemir, A.; Akduman, S.; Kocaer, O.; Aktepe, R.; Sahmaran, M.; Yildirim, G.; Almahmood, H.; and Ashour, A., “Shear Behaviour of Reinforced Construction and Demolition Waste-Based Geopolymer Concrete Beams,” Journal of Building Engineering, V. 47, Apr. 2022, Article No. 103861. doi: 10.1016/j.jobe.2021.103861
69. Du, Y.; Wang, J.; Shi, C.; Hwang, H.-J.; and Li, N., “Flexural Behavior of Alkali-Activated Slag-Based Concrete Beams,” Engineering Structures, V. 229, Feb. 2021, Article No. 111644. doi: 10.1016/j.engstruct.2020.111644
70. Hawileh, R. A.; Badrawi, H. A.; Makahleh, H. Y.; Karzad, A. S.; and Abdalla, J. A., “Behavior of Reinforced Concrete Beams Cast with a Proposed Geopolymer Concrete (GPC) Mix,” International Journal of Applied Science and Engineering, V. 19, No. 2, June 2022, Article No. 2022017. doi: 10.6703/IJASE.202206_19(2).009
71. Kathirvel, P., and Kaliyaperumal, S. R. M., “Influence of Recycled Concrete Aggregates on the Flexural Properties of Reinforced Alkali Activated Slag Concrete,” Construction and Building Materials, V. 102, Part 1, Jan. 2016, pp. 51-58. doi: 10.1016/j.conbuildmat.2015.10.148
72. Sathish Kumar, V.; Ganesan, N.; Indira, P. V.; Murali, G.; and Vatin, N. I., “Flexural Behaviour of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beams,” Sustainability, V. 14, No. 10, May 2022, Article No. 5954. doi: 10.3390/su14105954
73. Mamdouh, H.; Ali, A. M.; Osman, M. A.; Deifalla, A. F.; and Ayash, N. M., “Effects of Size and Flexural Reinforcement Ratio on Ambient-Cured Geopolymer Slag Concrete Beams under Four-Point Bending,” Buildings, V. 12, No. 10, Oct. 2022, Article No. 1554. doi: 10.3390/buildings12101554
74. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; and Mendis, P., “Evaluation of the Flexural Strength and Serviceability of Geopolymer Concrete Beams Reinforced with Glass-Fibre-Reinforced Polymer (GFRP) Bars,” Engineering Structures, V. 101, Oct. 2015, pp. 529-541. doi: 10.1016/j.engstruct.2015.08.003
75. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; Mendis, P.; and Nguyen, T. Q., “Flexural Behavior of Geopolymer-Concrete Beams Longitudinally Reinforced with GFRP and Steel Hybrid Reinforcements,” Engineering Structures, V. 182, Mar. 2019, pp. 141-152. doi: 10.1016/j.engstruct.2018.12.073
76. Moazzenchi, S., and Oskouei, A. V., “A Comparative Experimental Study on the Flexural Behavior of Geopolymer Concrete Beams Reinforced with FRP Bars,” Journal of Rehabilitation in Civil Engineering, V. 11, No. 1, 2023, pp. 21-42. doi: 10.22075/JRCE.2022.25157.1569
77. Rashid, K.; Li, X.; Xie, Y.; Deng, J.; and Zhang, F., “Cracking Behavior of Geopolymer Concrete Beams Reinforced with Steel and Fiber Reinforced Polymer Bars under Flexural Load,” Composites Part B: Engineering, V. 186, Apr. 2020, Article No. 107777. doi: 10.1016/j.compositesb.2020.107777
78. Sumajouw, M. D. J., and Rangan, B. V., “Low-Calcium Fly Ash-Based Geopolymer Concrete: Reinforced Beams and Columns,” Research Report GC 3, Curtin University of Technology, Perth, WA, Australia, 2006, 120 pp.
79. Tauqir, M.; Qazi, A. U.; Khan, Q. S.; Munir, M. J.; and Kazmi, S. M. S., “Shear Behavior of Geopolymer Concrete Slender Beams,” Buildings, V. 13, No. 5, May 2023, Article No. 1191. doi: 10.3390/buildings13051191
80. Yost, J. R.; Radlińska, A.; Ernst, S.; Salera, M.; and Martignetti, N. J., “Structural Behavior of Alkali Activated Fly Ash Concrete. Part 2: Structural Testing and Experimental Findings,” Materials and Structures, V. 46, No. 3, Mar. 2013, pp. 449-462. doi: 10.1617/s11527-012-9985-0
81. Zhang, H.; Wan, K.; Wu, B.; and Hu, Z., “Flexural Behavior of Reinforced Geopolymer Concrete Beams with Recycled Coarse Aggregates,” Advances in Structural Engineering, V. 24, No. 14, Oct. 2021, pp. 3281-3298. doi: 10.1177/13694332211026224
82. Darmawan, M. S.; Bayuaji, R.; Sugihardjo, H.; Husin, N. A.; and Anugraha Affandhie, R. B., “Shear Strength of Geopolymer Concrete Beams Using High Calcium Content Fly Ash in a Marine Environment,” Buildings, V. 9, No. 4, Apr. 2019, Article No. 98. doi: 10.3390/buildings9040098
83. Lee, K.-M.; Choi, S.; Choo, J. F.; Choi, Y.-C.; and Yoo, S.-W., “Flexural and Shear Behaviors of Reinforced Alkali-Activated Slag Concrete Beams,” Advances in Materials Science and Engineering, V. 2017, No. 1, 2017, Article No. 5294290. doi: 10.1155/2017/5294290
84. Madheswaran, C. K.; Ambily, P. S.; Lakshmanan, N.; Dattatreya, J. K.; and Jaffer Sathik, S. A., “Shear Behavior of Reinforced Geopolymer Concrete Thin-Webbed T-Beams,” ACI Materials Journal, V. 111, No. 1, Jan.-Feb. 2014, pp. 89-98. doi: 10.14359/51686449
85. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; and Mendis, P., “Shear Behavior of Geopolymer Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars,” ACI Structural Journal, V. 114, No. 2, Mar.-Apr. 2017, pp. 337-348. doi: 10.14359/51689150
86. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; Mendis, P.; and Nguyen, T. Q., “Shear Behaviour of Geopolymer-Concrete Beams Transversely Reinforced with Continuous Rectangular GFRP Composite Spirals,” Composite Structures, V. 187, Mar. 2018, pp. 454-465. doi: 10.1016/j.compstruct.2017.12.080
87. Mo, K. H.; Yeoh, K. H.; Bashar, I. I.; Alengaram, U. J.; and Jumaat, M. Z., “Shear Behaviour and Mechanical Properties of Steel Fibre-Reinforced Cement-Based and Geopolymer Oil Palm Shell Lightweight Aggregate Concrete,” Construction and Building Materials, V. 148, Sept. 2017, pp. 369-375. doi: 10.1016/j.conbuildmat.2017.05.017
88. Nikbakht, E.; Lok, J. W. W.; and Teo, W., “Structural Behaviour of Novel Composite Beams Consisting of Geopolymer Concrete and High-Performance Concrete,” Structures, V. 32, Aug. 2021, pp. 106-115. doi: 10.1016/j.istruc.2021.03.014
89. Tran, T. T.; Pham, T. M.; and Hao, H., “Effect of Hybrid Fibers on Shear Behaviour of Geopolymer Concrete Beams Reinforced by Basalt Fiber Reinforced Polymer (BFRP) Bars without Stirrups,” Composite Structures, V. 243, July 2020, Article No. 112236. doi: 10.1016/j.compstruct.2020.112236
90. Visintin, P.; Mohamed Ali, M. S.; Albitar, M.; and Lucas, W., “Shear Behaviour of Geopolymer Concrete Beams without Stirrups,” Construction and Building Materials, V. 148, Sept. 2017, pp. 10-21. doi: 10.1016/j.conbuildmat.2017.05.010
91. Wu, C.; Hwang, H.-J.; Shi, C.; Li, N.; and Du, Y., “Shear Tests on Reinforced Slag-Based Geopolymer Concrete Beams with Transverse Reinforcement,” Engineering Structures, V. 219, Sept. 2020, Article No. 110966. doi: 10.1016/j.engstruct.2020.110966
92. Wight, J. K., and MacGregor, J. G., Reinforced Concrete: Mechanics and Design, sixth edition, Pearson Education, Inc., Upper Saddle River, NJ, 2012, 1157 pp.
93. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.
94. Ahmad, J.; Yu, T.; and Hadi, M. N. S., “Behavior of GFRP Bar Reinforced Geopolymer Concrete Filled GFRP Tube Columns under Different Loading Conditions,” Structures, V. 33, Oct. 2021, pp. 1633-1644. doi: 10.1016/j.istruc.2021.05.023
95. Albitar, M.; Mohamed Ali, M. S.; and Visintin, P., “Experimental Study on Fly Ash and Lead Smelter Slag-Based Geopolymer Concrete Columns,” Construction and Building Materials, V. 141, June 2017, pp. 104-112. doi: 10.1016/j.conbuildmat.2017.03.014
96. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N. S., “Behaviour of Ambient Cured Steel Fibre Reinforced Geopolymer Concrete Columns Under Axial and Flexural Loads,” Structures, V. 15, Aug. 2018, pp. 184-195. doi: 10.1016/j.istruc.2018.07.001
97. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N. S., “Behavior of Ambient-Cured Geopolymer Concrete Columns under Different Loads,” ACI Structural Journal, V. 115, No. 5, Sept. 2018, pp. 1419-1429. doi: 10.14359/51702250
98. Hadi, M. N. S.; Ali, S.; and Sheikh, M. N., “Experimental Study of GFRP-Reinforced Geopolymer Concrete Columns under Different Loading Conditions,” Journal of Composites for Construction, ASCE, V. 25, No. 6, Dec. 2021, p. 04021052. doi: 10.1061/(ASCE)CC.1943-5614.0001164
99. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; and Mendis, P., “Behavior of Concentrically Loaded Geopolymer-Concrete Circular Columns Reinforced Longitudinally and Transversely with GFRP Bars,” Engineering Structures, V. 117, June 2016, pp. 422-436. doi: 10.1016/j.engstruct.2016.03.036
100. Nhabih, H. T.; Hussein, A. M.; and Salman, M. M., “Study a Structural Behavior of Eccentrically Loaded GFRP Reinforced Columns Made of Geopolymer Concrete,” Civil Engineering Journal, V. 6, No. 3, 2020, pp. 563-575. doi: 10.28991/cej-2020-03091492
101. Rashedi, A.; Marzouki, R.; Raza, A.; Ali, K.; Olaiya, N. G.; and Kalimuthu, M., “Glass FRP-Reinforced Geopolymer Based Columns Comprising Hybrid Fibres: Testing and FEA Modelling,” Polymers, V. 14, No. 2, Jan. 2022, Article No. 324. doi: 10.3390/polym14020324
102. Raza, A.; Manalo, A. C.; Rafique, U.; AlAjarmeh, O. S.; and Khan, Q. Z., “Concentrically Loaded Recycled Aggregate Geopolymer Concrete Columns Reinforced with GFRP Bars and Spirals,” Composite Structures, V. 268, July 2021, Article No. 113968. doi: 10.1016/j.compstruct.2021.113968
103. Saranya, P.; Nagarajan, P.; and Shashikala, A. P., “Behaviour of GGBS-Dolomite Geopolymer Concrete Short Column under Axial Loading,” Journal of Building Engineering, V. 30, July 2020, Article No. 101232. doi: 10.1016/j.jobe.2020.101232
104. Bilek, V.; Bonczková, S.; Hurta, J.; Pytlík, D.; and Mrovec, M., “Bond Strength Between Reinforcing Steel and Different Types of Concrete,” Procedia Engineering, V. 190, 2017, pp. 243-247. doi: 10.1016/j.proeng.2017.05.333
105. Orangun, C. O.; Jirsa, J. O.; and Breen, J. E., “The Strength of Anchor Bars: A Reevaluation of Test Data on Development Length and Splices,” Research Report No. 154-3F, The University of Texas at Austin, Austin, TX, Jan. 1975, 90 pp.
106. Canbay, E., and Frosch, R. J., “Bond Strength of Lap-Spliced Bars,” ACI Structural Journal, V. 102, No. 4, July-Aug. 2005, pp. 605-614. doi: 10.14359/14565
107. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.
108. Sarker, P. K.; Kelly, S.; and Yao, Z., ��Effect of Fire Exposure on Cracking, Spalling and Residual Strength of Fly Ash Geopolymer Concrete,” Materials & Design, V. 63, Nov. 2014, pp. 584-592. doi: 10.1016/j.matdes.2014.06.059
109. Lahoti, M.; Tan, K. H.; and Yang, E.-H., “A Critical Review of Geopolymer Properties for Structural Fire-Resistance Applications,” Construction and Building Materials, V. 221, Oct. 2019, pp. 514-526. doi: 10.1016/j.conbuildmat.2019.06.076
110. Lahoti, M.; Wong, K. K.; Tan, K. H.; and Yang, E.-H., “Effect of Alkali Cation Type on Strength Endurance of Fly Ash Geopolymers Subject to High Temperature Exposure,” Materials & Design, V. 154, Sept. 2018, pp. 8-19. doi: 10.1016/j.matdes.2018.05.023
111. IS 456:2000, “Plain and Reinforced Concrete – Code of Practice (Fourth Revision) (Reaffirmed in 2005),” Bureau of Indian Standards, New Delhi, India, 2000, 114 pp.
112. ACI Committee 440, “Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars (ACI 440.1R-15),” American Concrete Institute, Farmington Hills, MI, 2015, 88 pp.
113. CSA S806-12, “Design and Construction of Building Structures with Fibre-Reinforced Polymers (Reaffirmed 2021),” CSA Group, Toronto, ON, Canada, 2012, 201 pp.
114. TS 500-2000, “Requirements for Design and Construction of Reinforced Concrete Structures,” Turkish Standards Institute, Ankara, Turkey, 2000, 82 pp.
115. GB 50010-2010, “Code for Design of Concrete Structures,” Ministry of Housing and Urban-Rural Construction of the People’s Republic of China, Beijing, China, 2010.
116. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11),” American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.
117. ECP 203-2020, “Egyptian Code for Design and Construction of Reinforced Concrete Structures,” Housing and Building National Research Center, Cairo, Egypt, 2020.
118. ACI Committee 440, “Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars (ACI 440.1R-06),” American Concrete Institute, Farmington Hills, MI, 2006, 44 pp.
119. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08),” American Concrete Institute, Farmington Hills, MI, 2008, 473 pp.
120. AS 3600, “Concrete Structures (revision of AS 3600-2001),” Draft for Public Comment Australian Standard, DR 05252, Standards Australia, Sydney, NSW, Australia, 2005.
121. EN 1992-1-1:2004, “Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2004, 227 pp.
122. Okamura, H., and Higai, T., “Proposed Design Equation for Shear Strength of Reinforced Concrete Beams without Web Reinforcement,” Proceedings of the Japan Society of Civil Engineers, V. 1980, No. 300, 1980, pp. 131-141. doi: 10.2208/jscej1969.1980.300_131
123. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02),” American Concrete Institute, Farmington Hills, MI, 2002, 443 pp.
124. Zsutty, T. C., “Beam Shear Strength Prediction by Analysis of Existing Data,” ACI Journal Proceedings, V. 65, No. 11, Nov. 1968, pp. 943-951. doi: 10.14359/7526
125. Kennedy, R. P., “A Statistical Analysis of Shear Strength of Reinforced Concrete Beams,” PhD thesis, Stanford University, Stanford, CA, 1967, 256 pp.
126. Van Den Berg, F. J., “Shear Strength of Reinforced Concrete Beams Without Web Reinforcement: Part 2—Factors Affecting Load at Diagonal Cracking,” ACI Journal Proceedings, V. 59, No. 11, Nov. 1962, pp. 1587-1600. doi: 10.14359/7966
127. Krefeld, W. J., and Thurston, C. W., “Studies of the Shear and Diagonal Tension Strength of Simply Supported Reinforced Concrete Beams,” ACI Journal Proceedings, V. 63, No. 4, Apr. 1966, pp. 451-476. doi: 10.14359/7633
128. Jeong, C.-Y.; Kim, H.-G.; Kim, S.-W.; Lee, K.-S.; and Kim, K.-H., “Size Effect on Shear Strength of Reinforced Concrete Beams with Tension Reinforcement Ratio,” Advances in Structural Engineering, V. 20, No. 4, Apr. 2017, pp. 582-594. doi: 10.1177/1369433216658486
129. fib, “Model Code 2010 - Final Draft, Volume 2,” fib Bulletin No. 66, International Federation for Structural Concrete, Lausanne, Switzerland, 2012, 370 pp.
130. JSCE, “Standard Specifications for Concrete Structures – 2007 ‘Design’,” Japan Society of Civil Engineers, Tokyo, Japan, 2010, 503 pp.
131. CSA S6-09 Addendum, “Canadian Highway Bridge Design Code,” CSA Group, Toronto, ON, Canada, 2009.
132. Choi, K.-K.; Park, H.-G.; and Wight, J. K., “Unified Shear Strength Model for Reinforced Concrete Beams—Part I: Development,” ACI Structural Journal, V. 104, No. 2, Mar.-Apr. 2007, pp. 142-152. doi: 10.14359/18526
133. Alex, A. G.; Gebrehiwet Tewele, T.; Kemal, Z.; and Subramanian, R. B., “Flexural Behavior of Low Calcium Fly Ash Based Geopolymer Reinforced Concrete Beam,” International Journal of Concrete Structures and Materials, V. 16, No. 1, Dec. 2022, Article No. 40. doi: 10.1186/s40069-022-00531-x
134. Antonyamaladhas, M. R.; Chachithanantham, S.; and Ramaswamy, A., “Performance and Behaviour of Ground Granulated Blast Furnace Slag Imparted to Geopolymer Concrete Structural Elements and Analyzed with ANSYS,” Advances in Materials Science and Engineering, V. 2016, No. 1, 2016, Article No. 7023897. doi: 10.1155/2016/7023897
135. Arunachalam, S. K.; Muthiah, M.; Rangaswamy, K. D.; Kadarkarai, A.; and Arunasankar, C. G., “Improving the Structural Performance of Reinforced Geopolymer Concrete Incorporated with Hazardous Heavy Metal Waste Ash,” World Journal of Engineering, V. 19, No. 6, 2022, pp. 808-821. doi: 10.1108/WJE-01-2021-0055
136. Bhavana, P., and Srinivas, T., “Manufactured Sand Effect on Flexural Behavior of Geopolymer RCC Structural Elements,” AIP Conference Proceedings, V. 2358, No. 1, July 2021, Article No. 020007. doi: 10.1063/5.0058556
137. Pires, E. F. C.; Lima, T. V.; Marinho, F. J. V.; de Vargas, A. S.; Mounzer, E. C.; Darwish, F. A. I.; and Silva, F. J., “Physical Nonlinearity of Precast Reinforced Geopolymer Concrete Beams,” Journal of Materials Research and Technology, V. 8, No. 2, Apr. 2019, pp. 2083-2091. doi: 10.1016/j.jmrt.2019.01.016
138. Srinidhi, S. V., and Srinivas, T., “Flexural Behavior of RC Structural Elements Made by Geopolymer Concrete,” AIP Conference Proceedings, V. 2358, No. 1, July 2021, Article No. 020011. doi: 10.1063/5.0058496
139. Collins, F. G., and Sanjayan, J. G., “Workability and Mechanical Properties of Alkali Activated Slag Concrete,” Cement and Concrete Research, V. 29, No. 3, Mar. 1999, pp. 455-458. doi: 10.1016/S0008-8846(98)00236-1
140. Yacob, N. S.; ElGawady, M. A.; Sneed, L. H.; and Said, A., “Shear Strength of Fly Ash-Based Geopolymer Reinforced Concrete Beams,” Engineering Structures, V. 196, Oct. 2019, Article No. 109298. doi: 10.1016/j.engstruct.2019.109298
141. Saranya, P.; Nagarajan, P.; and Shashikala, A. P., “Performance Evaluation of Geopolymer Concrete Beams under Monotonic Loading,” Structures, V. 20, Aug. 2019, pp. 560-569. doi: 10.1016/j.istruc.2019.06.010
142. Yang, S.; Zhao, R.; Ma, B.; Si, R.; and Zeng, X., “Mechanical and Fracture Properties of Fly Ash-Based Geopolymer Concrete with Different Fibers,” Journal of Building Engineering, V. 63, Part A, Jan. 2023, Article No. 105281. doi: 10.1016/j.jobe.2022.105281
143. Pan, Z.; Sanjayan, J. G.; and Rangan, B. V., “Fracture Properties of Geopolymer Paste and Concrete,” Magazine of Concrete Research, V. 63, No. 10, Oct. 2011, pp. 763-771. doi: 10.1680/macr.2011.63.10.763
144. Sarker, P. K.; Haque, R.; and Ramgolam, K. V., “Fracture Behaviour of Heat Cured Fly Ash Based Geopolymer Concrete,” Materials & Design, V. 44, Feb. 2013, pp. 580-586. doi: 10.1016/j.matdes.2012.08.005
145. AS 3600:2018, “Concrete Structures,” Standards Australia, Sydney, NSW, Australia, 2018, 256 pp.
146. Mohamed, H. M.; Afifi, M. Z.; and Benmokrane, B., “Performance Evaluation of Concrete Columns Reinforced Longitudinally with FRP Bars and Confined with FRP Hoops and Spirals under Axial Load,” Journal of Bridge Engineering, ASCE, V. 19, No. 7, July 2014, p. 04014020. doi: 10.1061/(ASCE)BE.1943-5592.0000590