Title:
Axial Load-Bending Moment (P-M) Interaction of Geopolymer Fiber-Reinforced Concrete Slender Columns Reinforced with Steel, Glass Fiber-Reinforced Polymer, or Hybrid Double Layer
Author(s):
Mohammad AlHamaydeh and Fouad Amin
Publication:
Structural Journal
Volume:
121
Issue:
4
Appears on pages(s):
63-73
Keywords:
fiber-reinforced concrete (FRC); geopolymer concrete (GPC); glass fiber-reinforced polymer (GFRP) reinforcing bar; hybrid reinforcement; interaction diagrams; slender columns; slenderness ratio.
DOI:
10.14359/51740570
Date:
7/1/2024
Abstract:
A numerical integration model is developed to investigate the axialload-bending moment interactions of fiber-reinforced geopolymerconcrete (FRGPC) columns reinforced with double layers of steel,glass fiber-reinforced polymer (GFRP), or hybrid reinforcement.The model accounts for material and geometric nonlinearities,including the slenderness-induced second-order effects through aniterative layer-by-layer integration scheme of the critical section.Analytical investigations were conducted for various double-layerreinforcement configurations of steel, GFRP, and hybrid reinforcement. The effect of adding steel/synthetic macrofibers to the concrete matrix was also investigated. Moreover, comprehensivedeterministic sensitivity analyses were conducted to assess theinfluence of the concrete compressive strength (fco), reinforcementfiber dosage, and the longitudinal/transverse reinforcementratios on different response values. For the axial load capacity ofGFRP-reinforced columns, the longitudinal reinforcement ratiowas found to be the most influential parameter, whereas for thesteel/hybrid reinforced columns, fco was the most influential parameter. Moreover, for all the simulated configurations, confinement efficiency was most sensitive to fco out of all the investigated parameters. The longitudinal reinforcement ratio most influenced the bending moment capacity and the associated secant stiffness. Lastly, axial load-bending moment interactions were developed for various reinforcement configurations. The interactions included the effects of the slenderness ratio, the macrofiber type, longitudinal/transverse reinforcement type/strength, and the longitudinal reinforcement ratio. The GFRP-reinforced columns showed more sensitivity to slenderness effects than steel-reinforced columns.
Related References:
1. Davidovits, J., “Geopolymers: Inorganic Polymeric New Materials,” Journal of Thermal Analysis, V. 37, No. 8, 1991, pp. 1633-1656. doi: 10.1007/BF01912193
2. Ma, C.-K.; Awang, A. Z.; and Omar, W., “Structural and Material Performance of Geopolymer Concrete: A Review,” Construction and Building Materials, V. 186, 2018, pp. 90-102. doi: 10.1016/j.conbuildmat.2018.07.111
3. Duxson, P.; Fernández-Jiménez, A.; Provis, J. L.; Lukey, G. C.; Palomo, A.; and van Deventer, J. S. J., “Geopolymer Technology: The Current State of the Art,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 2917-2933. doi: 10.1007/s10853-006-0637-z
4. Komnitsas, K. A., “Potential of Geopolymer Technology towards Green Buildings and Sustainable Cities,” Procedia Engineering, V. 21, 2011, pp. 1023-1032. doi: 10.1016/j.proeng.2011.11.2108
5. Nath, P., and Sarker, P. K., “Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition,” Construction and Building Materials, V. 66, 2014, pp. 163-171. doi: 10.1016/j.conbuildmat.2014.05.080
6. Saranya, P.; Nagarajan, P.; and Shashikala, A. P., “Development of Ground-Granulated Blast-Furnace Slag-Dolomite Geopolymer Concrete,” ACI Materials Journal, V. 116, No. 6, Nov. 2019, pp. 235-243. doi: 10.14359/51716981
7. Zakka, W. P.; Abdul Shukor Lim, N. H.; and Chau Khun, M., “A Scientometric Review of Geopolymer Concrete,” Journal of Cleaner Production, V. 280, No. 1, 2021, p. 124353. doi: 10.1016/j.jclepro.2020.124353
8. Hassan, A.; Arif, M.; and Shariq, M., “Use of Geopolymer Concrete for a Cleaner and Sustainable Environment – A Review of Mechanical Properties and Microstructure,” Journal of Cleaner Production, V. 223, 2019, pp. 704-728. doi: 10.1016/j.jclepro.2019.03.051
9. Duxson, P.; Provis, J. L.; Lukey, G. C.; and van Deventer, J. S. J., “The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete,’” Cement and Concrete Research, V. 37, No. 12, 2007, pp. 1590-1597. doi: 10.1016/j.cemconres.2007.08.018
10. Li, Z.; Ding, Z.; and Zhang, Y., “Development of Sustainable Cementitious Materials,” Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 2004.
11. Saranya, P.; Nagarajan, P.; and Shashikala, A. P., “Behaviour of GGBS-Dolomite Geopolymer Concrete Short Column under Axial Loading,” Journal of Building Engineering, V. 30, 2020, p. 101232. doi: 10.1016/j.jobe.2020.101232
12. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Brice, D. G.; Kilcullen, A. R.; Hamdan, S.; and van Deventer, J. S. J., “Influence of Fly Ash on the Water and Chloride Permeability of Alkali-Activated Slag Mortars and Concretes,” Construction and Building Materials, V. 48, 2013, pp. 1187-1201. doi: 10.1016/j.conbuildmat.2013.07.106
13. Byfors, K.; Klingstedt, G.; Lehtonen, V.; Pyy, H.; and Romben, L., “Durability of Concrete Made With Alkali-Activated Slag,” Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings, Third International Conference, Trondheim, Norway, 1989, SP-114, American Concrete Institute, Farmington Hills, MI, 1989, pp. 1429-1466.
14. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y.-B., “Sulfate Attack on Alkali-Activated Slag Concrete,” Cement and Concrete Research, V. 32, No. 2, 2002, pp. 211-216. doi: 10.1016/S0008-8846(01)00659-7
15. Zhang, H. Y.; Qiu, G. H.; Kodur, V.; and Yuan, Z. S., “Spalling Behavior of Metakaolin-Fly Ash Based Geopolymer Concrete under Elevated Temperature Exposure,” Cement and Concrete Composites, V. 106, 2020, p. 103483. doi: 10.1016/j.cemconcomp.2019.103483
16. Sarker, P. K.; Kelly, S.; and Yao, Z., “Effect of Fire Exposure on Cracking, Spalling and Residual Strength of Fly Ash Geopolymer Concrete,” Materials & Design, V. 63, 2014, pp. 584-592. doi: 10.1016/j.matdes.2014.06.059
17. Junaid, M. T.; Khennane, A.; and Kayali, O., “Performance of Fly Ash Based Geopolymer Concrete Made Using Non-Pelletized Fly Ash Aggregates after Exposure to High Temperatures,” Materials and Structures, V. 48, No. 10, 2015, pp. 3357-3365. doi: 10.1617/s11527-014-0404-6
18. Saranya, P.; Nagarajan, P.; and Shashikala, A. P., “Performance Evaluation of Geopolymer Concrete Beams under Monotonic Loading,” Structures, V. 20, 2019, pp. 560-569. doi: 10.1016/j.istruc.2019.06.010
19. Saranya, P.; Nagarajan, P.; Shashikala, A. P.; and Salam, A. P., “Flexural Behaviour of GGBS-Dolomite Geopolymer Concrete Beams under Cyclic Loading,” Materials Science Forum, V. 969, 2019, pp. 291-296. doi: 10.4028/www.scientific.net/MSF.969.291
20. Noushini, A.; Hastings, M.; Castel, A.; and Aslani, F., “Mechanical and Flexural Performance of Synthetic Fibre Reinforced Geopolymer Concrete,” Construction and Building Materials, V. 186, 2018, pp. 454-475. doi: 10.1016/j.conbuildmat.2018.07.110
21. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N. S., “Axial Load-Bending Moment (P-M) Interactions of Geopolymer Concrete Column Reinforced with and without Steel Fiber,” ACI Structural Journal, V. 117, No. 1, Jan. 2020, pp. 133-144. doi: 10.14359/51720206
22. Elchalakani, M.; Ma, G.; Aslani, F.; and Duan, W., “Design of GFRP-Reinforced Rectangular Concrete Columns under Eccentric Axial Loading,” Magazine of Concrete Research, V. 69, No. 17, 2017, pp. 865-877. doi: 10.1680/jmacr.16.00437
23. Maranan, G.; Manalo, A.; Karunasena, K.; and Benmokrane, B., “Bond Stress-Slip Behavior: Case of GFRP Bars in Geopolymer Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 1, 2015, p. 04014116. doi: 10.1061/(ASCE)MT.1943-5533.0001046
24. Tobbi, H.; Farghaly, A. S.; and Benmokrane, B., “Concrete Columns Reinforced Longitudinally and Transversally with Glass Fiber-Reinforced Polymer Bars,” ACI Structural Journal, V. 109, No. 4, July-Aug. 2012, pp. 551-558. doi: 10.14359/51683874
25. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; and Mendis, P., “Behavior of Concentrically Loaded Geopolymer-Concrete Circular Columns Reinforced Longitudinally and Transversely with GFRP Bars,” Engineering Structures, V. 117, 2016, pp. 422-436. doi: 10.1016/j.engstruct.2016.03.036
26. Hales, T. A., “Slender Concrete Columns Reinforced with Fiber Reinforced Polymer Spirals,” PhD thesis, University of Utah, Salt Lake City, UT, 2015.
27. Hales, T. A.; Pantelides, C. P.; and Reaveley, L. D., “Experimental Evaluation of Slender High-Strength Concrete Columns with GFRP and Hybrid Reinforcement,” Journal of Composites for Construction, ASCE, V. 20, No. 6, 2016, p. 04016050. doi: 10.1061/(ASCE)CC.1943-5614.0000709
28. Pang, L.; Qu, W.; Zhu, P.; and Xu, J., “Design Propositions for Hybrid FRP-Steel Reinforced Concrete Beams,” Journal of Composites for Construction, ASCE, V. 20, No. 4, 2016, p. 04015086. doi: 10.1061/(ASCE)CC.1943-5614.0000654
29. Osman, S. M.; Wang, Y.; Alam, M. S.; and Sheikh, S. A., “Nonlinear Moment-Curvature Response of Hybrid Reinforced Concrete Sections Using S-CALC,” 12th Canadian Conference on Earthquake Engineering, Québec, QC, Canada, 2019.
30. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; Mendis, P.; and Nguyen, T. Q., “Flexural Behavior of Geopolymer- Concrete Beams Longitudinally Reinforced with GFRP and Steel Hybrid Reinforcements,” Engineering Structures, V. 182, 2019, pp. 141-152. doi: 10.1016/j.engstruct.2018.12.073
31. Afifi, M. Z.; Mohamed, H. M.; and Benmokrane, B., “Theoretical Stress–Strain Model for Circular Concrete Columns Confined by GFRP Spirals and Hoops,” Engineering Structures, V. 102, 2015, pp. 202-213. doi: 10.1016/j.engstruct.2015.08.020
32. Mander, J. B.; Priestley, M. J. N.; and Park, R., “Theoretical Stress‐Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, V. 114, No. 8, 1988, pp. 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
33. Karim, H.; Sheikh, M. N.; and Hadi, M. N. S., “Axial Load-Axial Deformation Behaviour of Circular Concrete Columns Reinforced with GFRP Bars and Helices,” Construction and Building Materials, V. 112, 2016, pp. 1147-1157. doi: 10.1016/j.conbuildmat.2016.02.219
34. Ganesan, N.; Abraham, R.; Deepa Raj, S.; and Sasi, D., “Stress-Strain Behaviour of Confined Geopolymer Concrete,” Construction and Building Materials, V. 73, 2014, pp. 326-331. doi: 10.1016/j.conbuildmat.2014.09.092
35. Muslikh; Anggraini, N. K.; Hardjito, D.; and Antonius, “Behavior of Geopolymer Concrete Confined by Circular Hoops,” MATEC Web of Conferences, V. 159, 2018, p. 01018. doi: 10.1051/matecconf/201815901018
36. Ahmad, A.; Plevris, V.; and Khan, Q.-Z., “Prediction of Properties of FRP-Confined Concrete Cylinders Based on Artificial Neural Networks,” Crystals, V. 10, No. 9, 2020, p. 811. doi: 10.3390/cryst10090811
37. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.
38. Abdelazim, W.; Mohamed, H. M.; Afifi, M. Z.; and Benmokrane, B., “Proposed Slenderness Limit for Glass Fiber-Reinforced Polymer- Reinforced Concrete Columns Based on Experiments and Buckling Analysis,” ACI Structural Journal, V. 117, No. 1, Jan. 2020, pp. 241-254. doi: 10.14359/51718073
39. Abdelazim, W.; Mohamed, H. M.; Benmokrane, B.; and Afifi, M. Z., “Effect of Critical Test Parameters on Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Slender Columns under Eccentric Load,” ACI Structural Journal, V. 117, No. 4, July 2020, pp. 127-142. doi: 10.14359/51723507
40. Hasan, H. A.; Karim, H.; Sheikh, M. N.; and Hadi, M. N. S., “Moment-Curvature Behavior of Glass Fiber-Reinforced Polymer Bar-Reinforced Normal-Strength Concrete and High-Strength Concrete Columns,” ACI Structural Journal, V. 116, No. 4, July 2019, pp. 65-75. doi: 10.14359/51715573
41. Hales, T. A.; Pantelides, C. P.; and Reaveley, L. D., “Analytical Buckling Model for Slender FRP-Reinforced Concrete Columns,” Composite Structures, V. 176, 2017, pp. 33-42. doi: 10.1016/j.compstruct.2017.05.034
42. Bligh, R., and Glasby, T., “Development of Geopolymer Precast Floor Panels for the Global Change Institute at University of Queensland,” Proceedings of the 26th Biennial National Conference of the Concrete Institute of Australia (Concrete 2013), Gold Coast, QLD, Australia, Oct. 16-18, 2013.
43. Cao, D. G.; Weng, L. Q.; and Wu, Y. G., Study and Application of Quick Setting Early Strength Geopolymer Concrete, Science Press, 2015. (in Chinese)
44. Van Rossum, G., and Drake, F. L., Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.
45. Hadi, M. N. S.; Ali, S.; and Neaz Sheikh, M., “Experimental Study of GFRP-Reinforced Geopolymer Concrete Columns under Different Loading Conditions,” Journal of Composites for Construction, ASCE, V. 25, No. 6, 2021, p. 04021052. doi: 10.1061/(ASCE)CC.1943-5614.0001164
46. Clemen, R. T., Making Hard Decisions: An Introduction to Decision Analysis, Brooks/Cole Publishing Company, Pacific Grove, CA, 1996.
47. Porter, K. A.; Beck, J. L.; and Shaikhutdinov, R. V., “Sensitivity of Building Loss Estimates to Major Uncertain Variables,” Earthquake Spectra, V. 18, No. 4, 2002, pp. 719-743. doi: 10.1193/1.1516201
48. Binici, B., and Mosalam, K. M., “Analysis of Reinforced Concrete Columns Retrofitted with Fiber Reinforced Polymer Lamina,” Composites Part B: Engineering, V. 38, No. 2, 2007, pp. 265-276. doi: 10.1016/j.compositesb.2006.01.006
49. AlHamaydeh, M.; Abed, F.; and Mustapha, A., “Key Parameters Influencing Performance and Failure Modes for BRBs Using Nonlinear FEA,” Journal of Constructional Steel Research, V. 116, 2016, pp. 1-18. doi: 10.1016/j.jcsr.2015.08.038
50. Kazmi, S. M. S.; Munir, M. J.; Wu, Y.-F.; Patnaikuni, I.; Zhou, Y.; and Xing, F., “Axial Stress-Strain Behavior of Macro-Synthetic Fiber Reinforced Recycled Aggregate Concrete,” Cement and Concrete Composites, V. 97, 2019, pp. 341-356. doi: 10.1016/j.cemconcomp.2019.01.005
51. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N. S., “Behavior of Ambient Cured Geopolymer Concrete Columns under Different Loads,” ACI Structural Journal, V. 115, No. 5, Sept. 2018, pp. 1419-1429. doi: 10.14359/51702250
52. Hadi, M. N. S.; Karim, H.; and Sheikh, M. N., “Experimental Investigations on Circular Concrete Columns Reinforced with GFRP Bars and Helices under Different Loading Conditions,” Journal of Composites for Construction, ASCE, V. 20, No. 4, 2016, p. 04016009. doi: 10.1061/(ASCE)CC.1943-5614.0000670
53. Bing, L.; Park, R.; and Tanaka, H., “Stress-Strain Behavior of High-Strength Concrete Confined by Ultra-High- and Normal-Strength Transverse Reinforcements,” ACI Structural Journal, V. 98, No. 3, May-June 2001, pp. 395-406. doi: 10.14359/10228
54. Wight, J. K., Reinforced Concrete: Mechanics and Design, seventh edition, Pearson, Essex, UK, 2015.
55. Salmon, C. G.; Johnson, J. E.; and Malhas, F. A., Steel Structures: Design and Behavior, fifth edition, Prentice Hall, Upper Saddle River, NJ, 2008.
56. AlHamaydeh, M., and Amin, F., “Interaction Diagrams of Geopolymer FRC Slender Columns with Double-Layer Reinforcement_Dataset,” Zenodo, 2023. doi: 10.5281/zenodo.10421691
57. AlHamaydeh, M., and Amin, F., “Data for Interaction Diagrams of Geopolymer FRC Slender Columns with Double-Layer GFRP and Steel Reinforcement,” Data, V. 6, No. 5, 2021, p. 43. doi: 10.3390/data6050043
58. ACI Committee 440, “Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars (ACI 440.1R-15),” American Concrete Institute, Farmington Hills, MI, 2015, 88 pp.
59. Yoo, C. H., and Lee, S. C., Stability of Structures: Principles and Applications, Elsevier Inc., Oxford, UK, 2011.
60. Abdelazim, W.; Mohamed, H. M.; and Benmokrane, B., “Proposed Flexural Stiffness of Slender Concrete Columns Reinforced with Glass Fiber-Reinforced Polymer Bars,” ACI Structural Journal, V. 118, No. 1, Jan. 2021, pp. 227-240. doi: 10.14359/51728183
61. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N. S., “Behaviour of Ambient Cured Steel Fibre Reinforced Geopolymer Concrete Columns Under Axial and Flexural Loads,” Structures, V. 15, 2018, pp. 184-195. doi: 10.1016/j.istruc.2018.07.001