Title:
Relation between Strength and Yield Stress in Fiber- Reinforced Mortar
Author(s):
Ronan Chometon, Maxime Liard, Pascal Hebraud, and Didier Lootens
Publication:
Materials Journal
Volume:
121
Issue:
2
Appears on pages(s):
105-114
Keywords:
critical volume fraction; fiber-reinforced mortar; flexural strength; master curves; mortar; rheology
DOI:
10.14359/51740371
Date:
4/1/2024
Abstract:
The need to constantly improve the quality and properties of manufactured products leads to the development of hybrid materials that combine different elements, complementing one another. Fiber-reinforced mortar is one of those products, as the fibers are used to improve cementitious materials’ flexural weakness. Experimental data on different metallic fibers dispersed in mortar demonstrate the correlation between early-age rheological properties and long-term mechanical strength. Both quantities depend on the ratio of the solid volume fraction of the fiber to a critical solid volume fraction characteristic of the form factors of the fiber. It is demonstrated that both effects arise from the packing stress of the fibers in the mortar when their concentrations are close to their maximum packing fraction. Geometrical arguments are used to explain how this critical volume fraction is related to the fiber form factor. Then, it enables the building of master curves using geometrical arguments.
Related References:
1. de Larrard, F., and Sedran, T., “Optimization of Ultra-High-Performance Concrete by the Use of a Packing Model,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 997-1009. doi: 10.1016/0008-8846(94)90022-1
2. MacGregor, J. G., Reinforced Concrete: Mechanics and Design, third edition, Prentice Hall, Upper Saddle River, NJ, 1997, 939 pp.
3. El-Hawary, M. M., and Abdul-Jaleel, A., “Durability Assessment of Epoxy Modified Concrete,” Construction and Building Materials, V. 24, No. 8, Aug. 2010, pp. 1523-1528. doi: 10.1016/j.conbuildmat.2010.02.004
4. Shaker, F. A.; El-Dieb, A. S.; and Reda, M. M., “Durability of Styrene-Butadiene Latex Modified Concrete,” Cement and Concrete Research, V. 27, No. 5, May 1997, pp. 711-720. doi: 10.1016/S0008-8846(97)00055-0
5. Topçu, I. B., “The Properties of Rubberized Concretes,” Cement and Concrete Research, V. 25, No. 2, Feb. 1995, pp. 304-310. doi: 10.1016/0008-8846(95)00014-3
6. Sivakumar, A., and Santhanam, M., “Mechanical Properties of High Strength Concrete Reinforced with Metallic and Non-Metallic Fibres,” Cement and Concrete Composites, V. 29, No. 8, Sept. 2007, pp. 603-608. doi: 10.1016/j.cemconcomp.2007.03.006
7. Wafa, F. F., and Ashour, S. A., “Mechanical Properties of High-Strength Fiber Reinforced Concrete,” ACI Materials Journal, V. 89, No. 5, Sept.-Oct. 1992, pp. 449-455.
8. Bansal, N. P., ed., Handbook of Ceramic Composites, Kluwer Academic Publishers, New York, 2005, 554 pp.
9. Acker, P., and Behloul, M., “Ductal® Technology: A Large Spectrum of Properties, A Wide Range of Applications,” Proceedings of the International Symposium on Ultra High Performance Concrete, M. Schmidt, E. Fehling, and C. Geisenhanslüke, eds., Kassel, Germany, Sept. 2004, pp. 11-23.
10. Petrie, C. J. S., “The Rheology of Fibre Suspensions,” Journal of Non-Newtonian Fluid Mechanics, V. 87, No. 2-3, Nov. 1999, pp. 369-402. doi: 10.1016/S0377-0257(99)00069-5
11. Maschmeyer, R. O., and Hill, C. T., “Rheology of Concentrated Suspensions of Fibers in Tube Flow. II. An Exploratory Study,” Transactions of The Society of Rheology, V. 21, No. 2, July 1977, pp. 183-194. doi: 10.1122/1.549453
12. Alrawashdeh, A., and Eren, O., “Mechanical and Physical Characterisation of Steel Fibre Reinforced Self-Compacting Concrete: Different Aspect Ratios and Volume Fractions of Fibres,” Results in Engineering, V. 13, Mar. 2022, Article No. 100335. doi: 10.1016/j.rineng.2022.100335
13. Nelson, P. K.; Li, V. C.; and Kamada, T., “Fracture Toughness of Microfiber Reinforced Cement Composites,” Journal of Materials in Civil Engineering, ASCE, V. 14, No. 5, Oct. 2002, pp. 384-391.
14. Ku, D.-O.; Kim, S.-D.; Kim, H.-S.; and Choi, K.-K., “Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete,” Journal of the Korea Concrete Institute, V. 26, No. 4, Aug. 2014, pp. 483-489. doi: 10.4334/JKCI.2014.26.4.483
15. Shin, H.-O.; Kim, K.; Oh, T.; and Yoo, D.-Y., “Effects of Fiber Type and Specimen Thickness on Flexural Behavior of Ultra-High-
Performance Fiber-Reinforced Concrete Subjected to Uniaxial and Biaxial Stresses,” Case Studies in Construction Materials, V. 15, Dec. 2021, Article No. e00726. doi: 10.1016/j.cscm.2021.e00726
16. Pannirselvam, N., and Manivel, S., “Influence of Addition of Glass Fibre on Concrete,” IOP Conference Series: Materials Science and Engineering, V. 1026, 2021, Article No. 012008. doi: 10.1088/1757-899X/1026/1/012008
17. Araya-Letelier, G.; Antico, F. C.; Carrasco, M.; Rojas, P.; and García-Herrera, C. M., “Effectiveness of New Natural Fibers on Damage-
Mechanical Performance of Mortar,” Construction and Building Materials, V. 152, Oct. 2017, pp. 672-682. doi: 10.1016/j.conbuildmat.2017.07.072
18. Si, W.; Cao, M.; and Li, L., “Establishment of Fiber Factor for Rheological and Mechanical Performance of Polyvinyl Alcohol (PVA) Fiber Reinforced Mortar,” Construction and Building Materials, V. 265, Dec. 2020, Article No. 120347. doi: 10.1016/j.conbuildmat.2020.120347
19. Pu, B.-C.; Liu, B.; Li, L.; Pang, W.; and Wan, Z., “Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer,” Materials, V. 14, No. 17, Sept. 2021, Article No. 5025. doi: 10.3390/ma14175025
20. Ibragimov, R.; Bogdanov, R.; Miftakhutdinova, L.; Fediuk, R.; Vatin, N. I.; and de Azevedo, A. R. G., “Effect of Polydisperse Reinforcement on the Fresh and Physical-Mechanical Properties of Self-Compacting Concrete,” Case Studies in Construction Materials, V. 17, Dec. 2022, Article No. e01188. doi: 10.1016/j.cscm.2022.e01188
21. Hameed, R.; Turatsinze, A.; Duprat, F.; and Sellier, A., “Metallic Fiber Reinforced Concrete: Effect of Fiber Aspect Ratio on the Flexural Properties,” ARPN Journal of Engineering and Applied Sciences, V. 4, No. 5, July 2009, pp. 67-72.
22. Rao, M. M.; Chowhan, L. N.; and Patro, S. K., “Effect of Aspect Ratio of Fiber in HDPE Reinforced Concrete,” International Journal of Engineering Research & Technology (IJERT), V. 8, No. 9, Sept. 2019, pp. 164-171.
23. Teng, L.; Meng, W.; and Khayat, K. H., “Rheology Control of Ultra-High-Performance Concrete Made with Different Fiber Contents,” Cement and Concrete Research, V. 138, Dec. 2020, Article No. 106222. doi: 10.1016/j.cemconres.2020.106222
24. Kang, M.-C.; Yoo, D.-Y.; and Gupta, R., “Machine Learning-Based Prediction for Compressive and Flexural Strengths of Steel Fiber-
Reinforced Concrete,” Construction and Building Materials, V. 266, Part B, Jan. 2021, Article No. 121117. doi: 10.1016/j.conbuildmat.2020.121117
25. FIBRAFLEX® Documentation, Saint-Gobain, Chalon-sur-Saône, France, www.fibraflex.fr/documents. (last accessed Feb. 16, 2024)
26. Liard, M.; Oblak, L.; Hachim, M.; Vachon, M.; and Lootens, D., “Impact of Viscosity on Hydration Kinetics and Setting Properties of Cementitious Materials,” Advances in Civil Engineering Materials, V. 3, No. 2, 2014, pp. 117-126. doi: 10.1520/ACEM20130096
27. Toussaint, F.; Roy, C.; and Jézéquel, P.-H., “Reducing Shear Thickening of Cement-Based Suspensions,” Rheologica Acta, V. 48, No. 8, Oct. 2009, pp. 883-895. doi: 10.1007/s00397-009-0362-z
28. Fabbris, F.; De Carvalho, W.; and Lootens, D., “A Concrete Rheometer: Features and Industrial Applications,” Rheology and Processing of Construction Materials: Proceedings of the 7th RILEM International Conference on Self-Compacting Concrete and 1st RILEM International Conference on Rheology and Processing of Construction Materials, N. Roussel and H. Bessaies-Bey, eds., Paris, France, 2013, pp. 99-106.
29. Olivas, A.; Ferraris, C. F.; Martys, N. S.; George, W. L.; Garboczi, E. J.; and Toman, B., “Certification of SRM 2493: Standard Reference Mortar for Rheological Measurements,” NIST Special Publication 260-187, National Institute of Standards and Technology, Gaithersburg, MD, 2017, 192 pp.
30. Evans, K. E., and Gibson, A. G., “Prediction of the Maximum Packing Fraction Achievable in Randomly Oriented Short-Fibre Composites,” Composites Science and Technology, V. 25, No. 2, 1986, pp. 149-162. doi: 10.1016/0266-3538(86)90040-0
31. Toll, S., “Packing Mechanics of Fiber Reinforcements,” Polymer Engineering and Science, V. 38, No. 8, Aug. 1998, pp. 1337-1350. doi: 10.1002/pen.10304
32. Milewski, J. V., “A Study of the Packing of Milled Fibreglass and Glass Beads,” Composites, V. 4, No. 6, Nov. 1973, pp. 258-265. doi: 10.1016/0010-4361(73)90392-3
33. Lok, T.-S., and Pei, J.-S., “Flexural Behavior of Steel Fiber Reinforced Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 10, No. 2, May 1998, pp. 86-97. doi: 10.1061/(ASCE)0899-1561(1998)10:2(86)
34. Banthia, N., ��A Study of Some Factors Affecting the Fiber–Matrix Bond in Steel Fiber Reinforced Concrete,” Canadian Journal of Civil Engineering, V. 17, No. 4, Aug. 1990, pp. 610-620. doi: 10.1139/l90-069
35. Johnston, C. D., “Steel Fiber Reinforced Mortar and Concrete: A Review of Mechanical Properties,” Fiber Reinforced Concrete, SP-44, American Concrete Institute, Farmington Hills, MI, 1974, pp. 127-142.
36. Shannag, M. J.; Brincker, R.; and Hansen, W., “Interfacial (Fiber-Matrix) Properties of High-Strength Mortar (150 MPa) from Fiber Pullout,” ACI Materials Journal, V. 93, No. 5, Sept.-Oct. 1996, pp. 480-485.
37. Mewis, J., and Wagner, N. J., Colloidal Suspension Rheology, Cambridge University Press, Cambridge, UK, 2012.
38. Einstein, A., “Eine neue Bestimmung der Moleküldimensionen,” Annalen der Physik, V. 324, No. 2, 1906, pp. 289-306. doi: 10.1002/andp.19063240204
39. Mueller, S.; Llewellin, E. W.; and Mader, H. M., “The Rheology of Suspensions of Solid Particles,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, V. 466, No. 2116, Apr. 2010, pp. 1201-1228. doi: 10.1098/rspa.2009.0445
40. Krieger, I. M., and Dougherty, T. J., “A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres,” Transactions of the Society of Rheology, V. 3, No. 1, 1959, pp. 137-152. doi: 10.1122/1.548848
41. Maron, S. H., and Pierce, P. E., “Application of Ree-Eyring Generalized Flow Theory to Suspensions of Spherical Particles,” Journal of Colloid Science, V. 11, No. 1, Feb. 1956, pp. 80-95. doi: 10.1016/0095-8522(56)90023-X
42. Rintoul, M. D., and Torquato, S., “Computer Simulations of Dense Hard‐Sphere Systems,” The Journal of Chemical Physics, V. 105, No. 20, Nov. 1996, pp. 9258-9265. doi: 10.1063/1.473004
43. Rutgers, I. R., “Relative Viscosity of Suspensions of Rigid Spheres in Newtonian Liquids,” Rheologica Acta, V. 2, No. 3, Sept. 1962, pp. 202-210. doi: 10.1007/BF01983952
44. Jeffery, G. B., “The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, V. 102, No. 715, Nov. 1922, pp. 161-179. doi: 10.1098/rspa.1922.0078
45. Brenner, H., “Rheology of a Dilute Suspension of Axisymmetric Brownian Particles,” International Journal of Multiphase Flow, V. 1, No. 2, Apr. 1974, pp. 195-341. doi: 10.1016/0301-9322(74)90018-4
46. Herschel, W. H., and Bulkley, R., “Konsistenzmessungen von Gummi-Benzollösungen,” Colloid and Polymer Science, V. 39, No. 4, Aug. 1926, pp. 291-300. doi: 10.1007/BF01432034
47. Gwon, S.; Han, S. H.; Vu, T. D.; Kim, C.; and Shin, M., “Rheological and Mechanical Properties of Kenaf and Jute Fiber-Reinforced Cement Composites,” International Journal of Concrete Structures and Materials, V. 17, No. 1, Dec. 2023, Article No. 5. doi: 10.1186/s40069-022-00565-1
48. De La Rosa, Á.; Ruiz, G.; Castillo, E.; and Moreno, R., “Probabilistic Assessment of the Dynamic Viscosity of Self-Compacting Steel-Fiber Reinforced Concrete through a Micromechanical Model,” Materials, V. 15, No. 8, Apr. 2022, Article No. 2763. doi: 10.3390/ma15082763
49. Teng, L.; Huang, H.; Du, J.; and Khayat, K. H., “Prediction of Fiber Orientation and Flexural Performance of UHPC Based on Suspending Mortar Rheology and Casting Method,” Cement and Concrete Composites, V. 122, Sept. 2021, Article No. 104142. doi: 10.1016/j.cemconcomp.2021.104142
50. Heymann, L.; Peukert, S.; and Aksel, N., “On the Solid-Liquid Transition of Concentrated Suspensions in Transient Shear Flow,” Rheologica Acta, V. 41, No. 4, Jan. 2002, pp. 307-315. doi: 10.1007/s00397-002-0227-1