Practical Approach to Predict Web-Shear Strength of Deep Prestressed Hollow-Core Slabs

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Practical Approach to Predict Web-Shear Strength of Deep Prestressed Hollow-Core Slabs

Author(s): Ernesto Hernández, Alessandro Palermo, and Ali Amin

Publication: Structural Journal

Volume: 121

Issue: 2

Appears on pages(s): 127-141

Keywords: biaxial tensile strength; deep members; prestressed hollow core slabs; shear stress distribution; web-shear strength

DOI: 10.14359/51740249

Date: 3/1/2024

Abstract:
This study proposes a practical design approach to estimate the web-shear strength of deep prestressed hollow-core slabs (PHCS). It explores the effects of critical factors such as the shear stress distribution, biaxial tensile strength, and the reduction in effective compressive stress in concrete, quantifying their impact on web-shear strength. A data set of 85 entries is used to undertake a comparative assessment, demonstrating the improved safety and accuracy of the proposed methodology against current design provisions and previous proposals. Moreover, it is shown that neglecting the beneficial effect of the prestressing force in the transfer region leads to a conservative estimation of the web-shear strength. Furthermore, the study introduces three modified design expressions based on ACI 318-19, fib Model Code 2010, and CSA A23.3-14 standards. The proposed methodology has practical implications for enhancing the safe and cost-effective use of deep PHCS in construction practice.

Related References:

1. Anderson, A. R., “Shear Strength of Hollow Core Members,” Technical Bulletin 78-B1, Concrete Technology Associates, Tacoma, WA, 1978.

2. Becker, R. J., and Buettner, D. R., “Shear Tests of Extruded Hollow-Core Slabs,” PCI Journal, V. 30, No. 2, 1985, pp. 40-54. doi: 10.15554/pcij.03011985.40.54

3. Walraven, J. C., and Mercx, W. M., “The Bearing Capacity for Prestressed Hollow Core Slabs,” Heron, V. 28, No. 3, 1983, pp. 1-46.

4. Pajari, M., “Resistance of Prestressed Hollow Core Slabs against Web Shear Failure,” VTT Research Notes 2292, Technical Research Centre of Finland, Espoo, Finland, 2005.

5. Hawkins, N. M., and Ghosh, S. K., “Shear Strength of Hollow-Core Slabs,” PCI Journal, V. 51, No. 1, 2006, pp. 110-114.

6. Palmer, K. D., and Schultz, A. E., “Experimental Investigation of the Web-Shear Strength of Deep Hollow-Core Units,” PCI Journal, V. 56, No. 4, 2011, pp. 83-104. doi: 10.15554/pcij.09012011.83.104

7. Simasathien, S., and Chao, S.-H., “Shear Strength of Steel-Fiber-Reinforced Deep Hollow-Core Slabs,” PCI Journal, V. 60, No. 4, 2015, pp. 85-101. doi: 10.15554/pcij.07012015.85.101

8. Tawadrous, R., and Morcous, G., “Shear Strength of Deep Hollow-core Slabs,” ACI Structural Journal, V. 115, No. 3, May 2018, pp. 699-709. doi: 10.14359/51701298

9. Dudnik, V. S.; Milliman, L. R.; and Parra-Montesinos, G. J., “Shear Behavior of Prestressed Steel-Fiber-Reinforced Concrete Hollow-Core Slabs,” PCI Journal, V. 62, No. 4, 2017, pp. 58-72.

10. Parra-Montesinos, G. J.; Fargier-Gabaldón, L. B.; and Al-Tameemi, M., “Shear Strength of Precast, Prestressed Steel Fiber Reinforced Concrete Hollow-Core Slabs,” Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 2019.

11. El-Sayed, A. K.; Al-Negheimish, A. I.; and Alhozaimy, A. M., “Web Shear Resistance of Prestressed Precast Deep Hollow Core Slabs,” ACI Structural Journal, V. 116, No. 1, Jan. 2019, pp. 139-150.

12. Nguyen, T. N. H.; Tan, K.-H.; and Kanda, T., “Investigations on Web-Shear Behavior of Deep Precast, Prestressed Concrete Hollow Core Slabs,” Engineering Structures, V. 183, 2019, pp. 579-593. doi: 10.1016/j.engstruct.2018.12.052

13. Park, M.-K.; Lee, D. H.; Han, S.-J.; and Kim, K. S., “Web-Shear Capacity of Thick Precast Prestressed Hollow-Core Slab Units Produced by Extrusion Method,” International Journal of Concrete Structures and Materials, V. 13, No. 1, 2019, p. 7. doi: 10.1186/s40069-018-0288-x

14. Conforti, A.; Ortiz-Navas, F.; Piemonti, A.; and Plizzari, G. A., “Enhancing the Shear Strength of Hollow-Core Slabs by Using Polypropylene Fibres,” Engineering Structures, V. 207, 2020, p. 110172. doi: 10.1016/j.engstruct.2020.110172

15. Nguyen, H. T. N.; Tan, K. H.; and Kanda, T., “Effect of Polypropylene and Steel Fibers on Web-Shear Resistance of Deep Concrete Hollow-Core Slabs,” Engineering Structures, V. 210, 2020, p. 110273. doi: 10.1016/j.engstruct.2020.110273

16. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.

17. Palmer, K. D., and Schultz, A. E., “Factors Affecting Web-Shear Capacity of Deep Hollow-Core Units,” PCI Journal, V. 55, No. 2, 2010, pp. 123-146. doi: 10.15554/pcij.03012010.123.146

18. Brunesi, E., and Nascimbene, R., “Numerical Web-Shear Strength Assessment of Precast Prestressed Hollow Core Slab Units,” Engineering Structures, V. 102, 2015, pp. 13-30. doi: 10.1016/j.engstruct.2015.08.013

19. EN 1992-1-1, “Eurocode 2: Design of Concrete Structures − Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2005.

20. Fan, S.; Zhang, Y.; Nguyen, T. N. H.; and Tan, K. H., “Toward Consistent Prediction of Web-Shear Capacity for Hollow-Core Slabs Using Strut-and-Tie Models,” Journal of Structural Engineering, ASCE, V. 148, No. 7, 2022, p. 04022081 doi: 10.1061/(ASCE)ST.1943-541X.0003346

21. Jonsson, E., “Shear Capacity of Prestressed Extruded Hollow-Core Slabs,” Nordic Concrete Research, V. 7, 1988, pp. 167-187.

22. fib, “fib Model Code for Concrete Structures 2010,” Fédération Internationale du Béton, Lausanne, Switzerland, 2013.

23. CSA A23.3-14, “Design of Concrete Structures,” CSA Group, Toronto, ON, Canada, 2014.

24. Yang, L., “Design of Prestressed Hollow Core Slabs with Reference to Web Shear Failure,” Journal of Structural Engineering, ASCE, V. 120, No. 9, 1994, pp. 2675-2696. doi: 10.1061/(ASCE)0733-9445(1994)120:9(2675)

25. Pajari, M., “Web Shear Failure in Prestressed Hollow Core Slabs,” Journal of Structural Mechanics, V. 42, No. 4, 2009, pp. 83-104.

26. Brooks, M. D., and Gerstle, K. H., “Effect of Initial Strand Slip on the Strength of Hollow-Core Slabs,” PCI Journal, V. 33, No. 1, 1988, pp. 90-111. doi: 10.15554/pcij.01011988.90.111

27. Hampel, T.; Speck, K.; Scheerer, S.; Ritter, R.; and Curbach, M., “High-Performance Concrete under Biaxial and Triaxial Loads,” Journal of Engineering Mechanics, ASCE, V. 135, No. 11, 2009, pp. 1274-1280. doi: 10.1061/(ASCE)0733-9399(2009)135:11(1274)

28. Kupfer, H.; Hilsdorf, H. K.; and Rusch, H., “Behavior of Concrete Under Biaxial Stresses,” ACI Journal Proceedings, V. 66, No. 8, Aug. 1969, pp. 656-666.

29. Hussein, A., and Marzouk, H., “Behavior of High-Strength Concrete under Biaxial Loading,” ACI Structural Journal, V. 97, No. 1, Jan.-Feb. 2000, pp. 27-36.

30. Kupfer, H. B., and Gerstle, K. H., “Behavior of Concrete under Biaxial Stresses,” Journal of the Engineering Mechanics Division, ASCE, V. 99, No. 4, 1973, pp. 853-866. doi: 10.1061/JMCEA3.0001789

31. Marí, A.; Bairán, J. M.; Cladera, A.; and Oller, E., “Shear Design and Assessment of Reinforced and Prestressed Concrete Beams Based on a Mechanical Model,” Journal of Structural Engineering, ASCE, V. 142, No. 10, 2016, p. 04016064. doi: 10.1061/(ASCE)ST.1943-541X.0001539

32. Traina, L. A., and Mansour, S. A., “Biaxial Strength and Deformational Behavior of Plain and Steel Fiber Concrete,” ACI Materials Journal, V. 88, No. 4, July-Aug. 1991, pp. 353-362.

33. Task Group 8.2, “Constitutive Modelling of High Strength / High Performance Concrete,” fib Bulletin 42, Fédération Internationale du Béton, Lausanne, Switzerland, 2008.

34. Plemenos, D., and Miaoulis, G., eds., Intelligent Computer Graphics 2010, Springer, 2010, 256 pp.

35. Collins, M. P., “Evaluation of Shear Design Procedures for Concrete Structures,” report prepared for the CSA Technical Committee on Reinforced Concrete Design, 2001.

36. Moraes Neto, B. N.; Barros, J. A. O.; and Melo, G. S. S. A., “Model to Simulate the Contribution of Fiber Reinforcement for the Punching Resistance of RC Slabs,” Journal of Materials in Civil Engineering, ASCE, V. 26, No. 7, 2014, p. 04014020. doi: 10.1061/(ASCE)MT.1943-5533.0000913

37. Frosch, R., and Wolf, T., “Simplified Shear Design of Prestressed Concrete Members,” Purdue University, West Lafayette, IN, 2003.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer