Title:
An Improved Prediction for Bond Strength of Deformed Bars in Concrete Externally Confined with Fiber- Reinforced Polymer
Author(s):
Zhenwen Xu and Dongming Yan
Publication:
Materials Journal
Volume:
120
Issue:
6
Appears on pages(s):
19-32
Keywords:
analytical model; bond strength; fiber-reinforced polymer (FRP) confinement; stress intensity factor (SIF); weight function
DOI:
10.14359/51739144
Date:
12/1/2023
Abstract:
External bonding with fiber-reinforced polymer (FRP) offers a
potential solution to mitigate the detrimental effects caused by
load impact and corrosion, which can weaken the bond strength
of reinforced concrete structures. However, existing models need
to be improved in addressing the FRP confinement mechanism and
failure modes. As a solution, the proposed model employs stress
intensity factor (SIF)-based criteria to determine the internal pressure exerted on the steel-concrete interface during various stages of comprehensive concrete cracking. Critical parameters are evaluated using weight function theory and a finite element model.
A bond-slip model is introduced for the FRP-concrete interface
and reasonable assumptions on failure plane characteristics. The
internal pressure model employed demonstrates that FRP confinement has the ability to generate dual peaks in stress distribution and modify their magnitude as the confinement level increases. The proposed predictive model demonstrates superior performance in failure modes, test methods, and wrap methods for assessing bond strength with FRP confinement. The accuracy of this model is indicated by an integral absolute error (IAE) of 9.6% based on 125 experimental data, surpassing the performance of the other
three existing models. Moreover, a new confinement parameter
is introduced and validated, showing an upper bound of 0.44 for
enhancing FRP bond strength. Additionally, a general expression
validating the bond strength model with FRP confinement is established, allowing for the prediction of bond length.
Related References:
References
1. Kono, S.; Matsuno, K.; and Kaku, T., “Bond-Slip Behavior of Longitudinal Reinforcing Bars Confined with FRP Sheets,” Proceedings of the 12th World Conference on Earthquake Engineering (12WCEE 2000), Auckland, New Zealand, 2000, Paper No. 0642.
2. Kono, S.; Matsuno, K.; and Kaku, T., “Experimental Study on Bond-Slip Behavior of Longitudinal Bars in Reinforced Concrete Beams Confined with Fiber Reinforced Polymer Sheets,” Fourth International Symposium: Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, SP-188, C. W. Dolan, S. H. Rizkalla, and A. Nanni, eds., American Concrete Institute, Farmington Hills, MI, 1999, pp. 333-346.
3. Kono, S.; Inazumi, M.; and Kaku, T., “Bond Splitting Behavior of Reinforced Concrete Members Confined with CFRP Sheets,” Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), Sapporo, Japan, 1997, pp. 14-16.
4. Tastani, S. P., and Pantazopoulou, S. J., “Direct Tension Pullout Bond Test: Experimental Results,” Journal of Structural Engineering, ASCE, V. 136, No. 6, June 2010, pp. 731-743. doi: 10.1061/(ASCE)ST.1943-541X.0000159
5. Ozden, S., and Akpinar, E., “Effect of Confining FRP Overlays on Bond Strength Enhancement,” Construction and Building Materials, V. 21, No. 7, July 2007, pp. 1377-1389. doi: 10.1016/j.conbuildmat.2006.08.003
6. Zhao, D.; Zhou, Y.; Xing, F.; Sui, L.; Ye, Z.; and Fu, H., “Bond Behavior and Failure Mechanism of Fiber-Reinforced Polymer Bar–Engineered Cementitious Composite Interface,” Engineering Structures, V. 243, Sept. 2021, Article No. 112520. doi: 10.1016/j.engstruct.2021.112520
7. Zhou, Y.; Fu, H.; Li, P.; Zhao, D.; Sui, L.; and Li, L., “Bond Behavior between Steel Bar and Engineered Cementitious Composite (ECC) Considering Lateral FRP Confinement: Test and Modeling,” Composite Structures, V. 226, Oct. 2019, Article No. 111206. doi: 10.1016/j.compstruct.2019.111206
8. Wang, J.; Xiao, F.; and Yang, J., “Experimental Study on Bond Behavior between Epoxy-Coated Reinforcement (ECR) and Seawater Sea-Sand Concrete (SSC) under FRP-Steel Confinement,” Construction and Building Materials, V. 385, July 2023, Article No. 131426. doi: 10.1016/j.conbuildmat.2023.131426
9. Harajli, M. H., “Effect of Confinement Using Steel, FRC, or FRP on the Bond Stress-Slip Response of Steel Bars under Cyclic Loading,” Materials and Structures, V. 39, No. 6, July 2006, pp. 621-634. doi: 10.1007/s11527-005-9054-z
10. Rteil, A. A.; Soudki, K. A.; and Topper, T. H., “Preliminary Experimental Investigation of the Fatigue Bond Behavior of CFRP Confined RC Beams,” Construction and Building Materials, V. 21, No. 4, Apr. 2007, pp. 746-755. doi: 10.1016/j.conbuildmat.2006.06.022
11. Alyousef, R.; Topper, T.; and Al-Mayah, A., “Fatigue Bond Stress–Slip Behavior of Lap Splices in the Reinforcement of Unwrapped and FRP-Wrapped Concrete Beams,” Journal of Composites for Construction, ASCE, V. 20, No. 6, Dec. 2016, p. 04016039. doi: 10.1061/(ASCE)CC.1943-5614.0000699
12. Alyousef, R.; Topper, T.; and Al-Mayah, A., “Effect of FRP Wrapping on Fatigue Bond Behavior of Spliced Concrete Beams,” Journal of Composites for Construction, ASCE, V. 20, No. 1, Feb. 2016, p. 04015030. doi: 10.1061/(ASCE)CC.1943-5614.0000588
13. Hamad, B. S.; Rteil, A. A.; and Soudki, K. A., “Bond Strength of Tension Lap Splices in High-Strength Concrete Beams Strengthened with Glass Fiber Reinforced Polymer Wraps,” Journal of Composites for Construction, ASCE, V. 8, No. 1, Feb. 2004, pp. 14-21. doi: 10.1061/(ASCE)1090-0268(2004)8:1(14)
14. Orangun, C. O.; Jirsa, J. O.; and Breen, J. E., “A Reevaluation of Test Data on Development Length and Splices,” ACI Journal Proceedings, V. 74, No. 3, Mar. 1977, pp. 114-122.
15. Harajli, M. H.; Hamad, B. S.; and Rteil, A. A., “Effect of Confinement on Bond Strength between Steel Bars and Concrete,” ACI Structural Journal, V. 101, No. 5, Sept.-Oct. 2004, pp. 595-603.
16. Garcia, R.; Helal, Y.; Pilakoutas, K.; and Guadagnini, M., “Bond Behavior of Substandard Splices in RC Beams Externally Confined with CFRP,” Construction and Building Materials, V. 50, Jan. 2014, pp. 340-351. doi: 10.1016/j.conbuildmat.2013.09.021
17. Garcia, R.; Helal, Y.; Pilakoutas, K.; and Guadagnini, M., “Bond Strength of Short Lap Splices in RC Beams Confined with Steel Stirrups or External CFRP,” Materials and Structures, V. 48, No. 1-2, Jan. 2015, pp. 277-293. doi: 10.1617/s11527-013-0183-5
18. Cai, J.; Pan, J.; Tan, J.; and Li, X., “Bond Behaviours of Deformed Steel Rebars in Engineered Cementitious Composites (ECC) and Concrete,” Construction and Building Materials, V. 252, Aug. 2020, Article No. 119082. doi: 10.1016/j.conbuildmat.2020.119082
19. Santos, J., and Henriques, A. A., “New Finite Element to Model Bond–Slip with Steel Strain Effect for the Analysis of Reinforced Concrete Structures,” Engineering Structures, V. 86, Mar. 2015, pp. 72-83. doi: 10.1016/j.engstruct.2014.12.036
20. Malek, A.; Scott, A.; Pampanin, S.; and Hoult, N. A., “Postyield Bond Deterioration and Damage Assessment of RC Beams Using Distributed Fiber-Optic Strain Sensing System,” Journal of Structural Engineering, ASCE, V. 145, No. 4, Apr. 2019, p. 04019007. doi: 10.1061/(ASCE)ST.1943-541X.0002286
21. Zhou, B.; Wu, R.; and Feng, J., “Two Models for Evaluating the Bond Behavior in Pre- and Post-Yield Phases of Reinforced Concrete,” Construction and Building Materials, V. 147, Aug. 2017, pp. 847-857. doi: 10.1016/j.conbuildmat.2017.04.067
22. Hamad, B. S.; Soudki, K. A.; Harajli, M. H.; and Rteil, A. A., “Experimental and Analytical Evaluation of Bond Strength of Reinforcement in Fiber-Reinforced Polymer-Wrapped High-Strength Concrete Beams,” ACI Structural Journal, V. 101, No. 6, Nov.-Dec. 2004, pp. 747-754.
23. Harajli, M. H., “Bond Strengthening of Steel Bars Using External FRP Confinement: Implications on the Static and Cyclic Response of R/C Members,” 7th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures, SP-230, C. K. Shield, J. P. Busel, S. L. Walkup, and D. D. Gremel, eds., American Concrete Institute, Farmington Hills, MI, 2005, pp. 579-596.
24. Zuo, J., and Darwin, D., “Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete,” ACI Structural Journal, V. 97, No. 4, July-Aug. 2000, pp. 630-641.
25. Gong, Y.; Shan, Y.; Liu, X.; Ding, F.; and Wu, Y., “Static Bond Behavior between Corroded Corner Steel Bar and Concrete under the Hoop Confinement of CFRP Sheets,” Composite Structures, V. 276, Nov. 2021, Article No. 114589. doi: 10.1016/j.compstruct.2021.114589
26. Wu, Y.-F., and Zhao, X.-M., “Unified Bond Stress–Slip Model for Reinforced Concrete,” Journal of Structural Engineering, ASCE, V. 139, No. 11, Nov. 2013, pp. 1951-1962. doi: 10.1061/(ASCE)ST.1943-541X.0000747
27. Huang, L.; Xu, L.; Chi, Y.; Deng, F.; and Zhang, A., “Bond Strength of Deformed Bar Embedded in Steel-Polypropylene Hybrid Fiber Reinforced Concrete,” Construction and Building Materials, V. 218, Sept. 2019, pp. 176-192. doi: 10.1016/j.conbuildmat.2019.05.096
28. Dehestani, M.; Asadi, A.; and Mousavi, S. S., “On Discrete Element Method for Rebar-Concrete Interaction,” Construction and Building Materials, V. 151, Oct. 2017, pp. 220-227. doi: 10.1016/j.conbuildmat.2017.06.086
29. Glinka, G., and Shen, G., “Universal Features of Weight Functions for Cracks in Mode I,” Engineering Fracture Mechanics, V. 40, No. 6, 1991, pp. 1135-1146. doi: 10.1016/0013-7944(91)90177-3
30. Dugdale, D. S., “Yielding of Steel Sheets Containing Slits,” Journal of the Mechanics and Physics of Solids, V. 8, No. 2, May 1960, pp. 100-104. doi: 10.1016/0022-5096(60)90013-2
31. Yang, S. T.; Ni, Y. L.; and Li, C. Q., “Weight Function Method to Determine Stress Intensity Factor for Semi-Elliptical Crack with High Aspect Ratio in Cylindrical Vessels,” Engineering Fracture Mechanics, V. 109, Sept. 2013, pp. 138-149. doi: 10.1016/j.engfracmech.2013.05.014
32. Xu, S., and Reinhardt, H. W., “Crack Extension Resistance and Fracture Properties of Quasi-Brittle Softening Materials like Concrete Based on the Complete Process of Fracture,” International Journal of Fracture, V. 92, No. 1, July 1998, pp. 71-99. doi: 10.1023/A:1007553012684
33. Reinhardt, H. W.; Cornelissen, H. A. W.; and Hordijk, D. A., “Tensile Tests and Failure Analysis of Concrete,” Journal of Structural Engineering, ASCE, V. 112, No. 11, Nov. 1986, pp. 2462-2477. doi: 10.1061/(ASCE)0733-9445(1986)112:11(2462)
34. Xu, F.; Wu, Z.; Li, W.; Liu, W.; Wang, S.; and Du, D., “Analytical Bond Strength of Deformed Bars in Concrete Due to Splitting Failure,” Materials and Structures, V. 51, No. 6, Dec. 2018, Article No. 139. doi: 10.1617/s11527-018-1266-0
35. Lau, I.; Fu, G.; Li, C.-Q.; De Silva, S.; and Guo, Y., “Critical Crack Depth in Corrosion-Induced Concrete Cracking,” ACI Structural Journal, V. 115, No. 4, July 2018, pp. 1175-1184. doi: 10.14359/51702261
36. Wolfram Research, Inc., “Wolfram Mathematica 11,” Wolfram Research, Inc., Champaign, IL, 2018.
37. fib, “CEB-FIP Model Code 1990,” CEB Bulletin No. 213/214, International Federation for Structural Concrete, Lausanne, Switzerland, 1993, 460 pp.
38. Wu, C.; Chen, G.; Volz, J. S.; Brow, R. K.; and Koenigstein, M. L., “Local Bond Strength of Vitreous Enamel Coated Rebar to Concrete,” Construction and Building Materials, V. 35, Oct. 2012, pp. 428-439. doi: 10.1016/j.conbuildmat.2012.04.067
39. Harajli, M. H., and Dagher, F., “Seismic Strengthening of Bond-Critical Regions in Rectangular Reinforced Concrete Columns Using Fiber-Reinforced Polymer Wraps,” ACI Structural Journal, V. 105, No. 1, Jan.-Feb. 2008, pp. 68-77.
40. Nakaba, K.; Kanakubo, T.; Furuta, T.; and Yoshizawa, H., “Bond Behavior between Fiber-Reinforced Polymer Laminates and Concrete,” ACI Structural Journal, V. 98, No. 3, May-June 2001, pp. 359-367.
41. Dai, J.; Ueda, T.; and Sato, Y., “Development of the Nonlinear Bond Stress–Slip Model of Fiber Reinforced Plastics Sheet–Concrete Interfaces with a Simple Method,” Journal of Composites for Construction, ASCE, V. 9, No. 1, Feb. 2005, pp. 52-62. doi: 10.1061/(ASCE)1090-0268(2005)9:1(52)
42. Xu, Z.; Liu, Y.; Zeng, Q.; and Yan, D., “An Improved Model for Predicting Bond Strength of Deformed Rebars in Concrete with Stirrups,” Engineering Fracture Mechanics, V. 276, Part B, Dec. 2022, Article No. 108893. doi: 10.1016/j.engfracmech.2022.108893
43. Mousavi, S. S.; Guizani, L.; and Ouellet-Plamondon, C. M., “Simplified Analytical Model for Interfacial Bond Strength of Deformed Steel Rebars Embedded in Pre-cracked Concrete,” Journal of Structural Engineering, ASCE, V. 146, No. 8, Aug. 2020, p. 04020142. doi: 10.1061/(ASCE)ST.1943-541X.0002687
44. Darwin, D., and Graham, E. K., “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” ACI Structural Journal, V. 90, No. 6, Nov.-Dec. 1993, pp. 646-657.
45. Zhang, X.; Dong, W.; Lv, C.; Yang, M.; and Ou, J., “Analytical Approach to Modeling the Effect of Transverse Reinforcements on the Bond Strength of Deformed Bars,” Journal of Structural Engineering, ASCE, V. 145, No. 6, June 2019, p. 04019046. doi: 10.1061/(ASCE)ST.1943-541X.0002293
46. GB/T 1499.2-2018, “Steel for the Reinforcement of Concrete—Part 2: Hot Rolled Ribbed Bars,” Standardization Administration of the People’s Republic of China, Beijing, China, 2018.
47. Zhou, Y.; Dang, L.; Sui, L.; Li, D.; Zhao, X.; Xing, F.; and Wu, Y., “Experimental Study on the Bond Behavior between Corroded Rebar and Concrete under Dual Action of FRP Confinement and Sustained Loading,” Construction and Building Materials, V. 155, Nov. 2017, pp. 605-616. doi: 10.1016/j.conbuildmat.2017.08.049
48. Bengar, H. A.; Hosseinpour, M.; and Celikag, M., “Influence of CFRP Confinement on Bond Behavior of Steel Deformed Bar Embedded in Concrete Exposed to High Temperature,” Structures, V. 24, Apr. 2020, pp. 240-252. doi: 10.1016/j.istruc.2020.01.017
49. Hamad, B. S.; Rteil, A. A.; Salwan, B. R.; and Soudki, K. A., “Behavior of Bond-Critical Regions Wrapped with Fiber-Reinforced Polymer Sheets in Normal and High-Strength Concrete,” Journal of Composites for Construction, ASCE, V. 8, No. 3, June 2004, pp. 248-257. doi: 10.1061/(ASCE)1090-0268(2004)8:3(248)
50. Shehata, I. A. E. M.; Carneiro, L. A. V.; and Shehata, L. C. D., “Strength of Short Concrete Columns Confined with CFRP Sheets,” Materials and Structures, V. 35, No. 1, Jan. 2002, pp. 50-58. doi: 10.1007/BF02482090
51. Spoelstra, M. R., and Monti, G., “FRP-Confined Concrete Model,” Journal of Composites for Construction, ASCE, V. 3, No. 3, Aug. 1999, pp. 143-150. doi: 10.1061/(ASCE)1090-0268(1999)3:3(143)