Strut-and-Tie Models Using Multi-Material and Multi- Volume Topology Optimization: Load Path Approach

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Strut-and-Tie Models Using Multi-Material and Multi- Volume Topology Optimization: Load Path Approach

Author(s): Tuo Zhao, Ammar A. Alshannaq, David W. Scott, and Glaucio H. Paulino

Publication: Structural Journal

Volume: 120

Issue: 6

Appears on pages(s): 7-22

Keywords: load path; Michell number; multi-material topology optimization; reinforced concrete (RC) deep beam; strut and tie

DOI: 10.14359/51739089

Date: 11/1/2023

Abstract:
The development of strut-and-tie models (STMs) for the design of reinforced concrete (RC) deep beams considering a general multi-material and multi-volume topology optimization framework is presented. The general framework provides flexibility to control the location/inclination/length scale of the ties according to practical design requirements. Optimality conditions are applied to evaluate the performance of the optimized STM layouts. Specifically, the Michell number Z (or load path) is used as a simple and effective criterion to quantify the STMs. The experimental results confirm that the layout with the lowest load path Z achieves the highest ultimate load. Moreover, significantly reduced cracking is observed in the optimized layouts compared to the traditional layout. This observation implies that the optimized layouts may require less crack-control reinforcement, which would lower the total volume of steel required for the deep beams.

Related References:

ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 624 pp.

Birrcher, D.; Tuchscherer, R.; Huizinga, M.; Bayrak, O.; Wood, S.; and Jirsa, J., 2009, “Strength and Serviceability Design of Reinforced Concrete Deep Beams,” Report No. FHWA/TX-09/0-5253-1, Center for Transportation Research, The University of Texas at Austin, Austin, TX, 400 pp.

Breña, S. F., and Roy, N. C., 2009, “Evaluation of Load Transfer and Strut Strength of Deep Beams with Short Longitudinal Bar Anchorages,” ACI Structural Journal, V. 106, No. 5, Sept.-Oct., pp. 678-689.

Bruggi, M., 2010, “On the Automatic Generation of Strut and Tie Patterns under Multiple Load Cases with Application to the Aseismic Design of Concrete Structures,” Advances in Structural Engineering, V. 13, No. 6, Dec., pp. 1167-1181. doi: 10.1260/1369-4332.13.6.1167

Christensen, P. W., and Klarbring, A., 2008, An Introduction to Structural Optimization, Springer Science+Business Media B.V., Dordrecht, the Netherlands.

Dorn, W. S.; Gomory, R. E.; and Greenberg, H. J., 1964, “Automatic Design of Optimal Structures,” Journal de Mécanique, V. 3, No. 1, pp. 25-52.

Gaynor, A. T.; Guest, J. K.; and Moen, C. D., 2013, “Reinforced Concrete Force Visualization and Design Using Bilinear Truss-Continuum Topology Optimization,” Journal of Structural Engineering, ASCE, V. 139, No. 4, Apr., pp. 607-618. doi: 10.1061/(ASCE)ST.1943-541X.0000692

Groenwold, A. A., and Etman, L. F. P., 2008, “On the Equivalence of Optimality Criterion and Sequential Approximate Optimization Methods in the Classical Topology Layout Problem,” International Journal for Numerical Methods in Engineering, V. 73, No. 3, Jan., pp. 297-316. doi: 10.1002/nme.2071

He, Z.-Q.; Liu, Z.; Wang, J.; and Ma, Z. J., 2020, “Development of Strut-and-Tie Models Using Load Path in Structural Concrete,” Journal of Structural Engineering, ASCE, V. 146, No. 5, May, p. 06020004. doi: 10.1061/(ASCE)ST.1943-541X.0002631

Ismail, K. S., 2016, “Shear Behaviour of Reinforced Concrete Deep Beams,” PhD thesis, University of Sheffield, Sheffield, UK, 312 pp.

Ismail, K. S.; Guadagnini, M.; and Pilakoutas, K., 2018, “Strut-and-Tie Modeling of Reinforced Concrete Deep Beams,” Journal of Structural Engineering, ASCE, V. 144, No. 2, Feb., p. 04017216. doi: 10.1061/(ASCE)ST.1943-541X.0001974

Jewett, J. L., and Carstensen, J. V., 2019, “Experimental Investigation of Strut-and-Tie Layouts in Deep RC Beams Designed with Hybrid Bi-linear Topology Optimization,” Engineering Structures, V. 197, Oct., Article No. 109322. doi: 10.1016/j.engstruct.2019.109322

Kondalraj, R., and Appa Rao, G., 2021, “Experimental Verification of ACI 318 Strut-and-Tie Method for Design of Deep Beams without Web Reinforcement,” ACI Structural Journal, V. 118, No. 1, Jan., pp. 139-152.

Kumar, P., 1978, “Optimal Force Transmission in Reinforced Concrete Deep Beams,” Computers & Structures, V. 8, No. 2, Apr., pp. 223-229. doi: 10.1016/0045-7949(78)90026-3

Leu, L.-J.; Huang, C.-W.; Chen, C.-S.; and Liao, Y.-P., 2006, “Strut-and-Tie Design Methodology for Three-Dimensional Reinforced Concrete Structures,” Journal of Structural Engineering, ASCE, V. 132, No. 6, June, pp. 929-938. doi: 10.1061/(ASCE)0733-9445(2006)132:6(929)

Liang, Q. Q.; Xie, Y. M.; and Steven, G. P., 2000, “Topology Optimization of Strut-and-Tie Models in Reinforced Concrete Structures Using an Evolutionary Procedure,” ACI Structural Journal, V. 97, No. 2, Mar.-Apr., pp. 322-331.

Liang, Q. Q.; Xie, Y. M.; and Steven, G. P., 2001, “Generating Optimal Strut-and-Tie Models in Prestressed Concrete Beams by Performance-Based Optimization,” ACI Structural Journal, V. 98, No. 2, Mar.-Apr., pp. 226-232.

MacGregor, J. G., 1997, Reinforced Concrete: Mechanics and Design, Prentice Hall, Upper Saddle River, NJ.

Martinez, G. A.; Beiter, K. S.; Ghiami Azad, A. R.; Polo, G. E.; Shinn, R. L.; Hrynyk, T. D.; and Bayrak, O., 2017, “Testing and Analysis of Two Deep Beams Designed Using Strut-and-Tie Method,” ACI Structural Journal, V. 114, No. 6, Nov.-Dec., pp. 1531-1542. doi: 10.14359/51689504

Maxwell, J. C., 1864, “XLV. On Reciprocal Figures and Diagrams of Forces,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, V. 27, No. 182, Series 4, pp. 250-261. doi: 10.1080/14786446408643663

Michell, A. G. M., 1904, “LVIII. The Limits of Economy of Material in Frame-Structures,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, V. 8, No. 47, Series 6, pp. 589-597. doi: 10.1080/14786440409463229

Mozaffari, S.; Akbarzadeh, M.; and Vogel, T., 2020, “Graphic Statics in a Continuum: Strut-and-Tie Models for Reinforced Concrete,” Computers & Structures, V. 240, Nov., Article No. 106335. doi: 10.1016/j.compstruc.2020.106335

Panjehpour, M.; Chai, H. K.; and Voo, Y. L., 2015, “Refinement of Strut-and-Tie Model for Reinforced Concrete Deep Beams,” PLOS ONE, V. 10, No. 6, June, Article No. e0130734. doi: 10.1371/journal.pone.0130734

Rezaei, N.; Klein, G.; and Garber, D. B., 2019, “Strut Strength and Failure in Full-Scale Concrete Deep Beams,” ACI Structural Journal, V. 116, No. 3, May, pp. 65-74. doi: 10.14359/51713306

Sanders, E. D.; Aguiló, M. A.; and Paulino, G. H., 2018, “Multi-Material Continuum Topology Optimization with Arbitrary Volume and Mass Constraints,” Computer Methods in Applied Mechanics and Engineering, V. 340, Oct., pp. 798-823. doi: 10.1016/j.cma.2018.01.032

Sanders, E. D.; Ramos, A. S. Jr.; and Paulino, G. H., 2020, “Topology Optimization of Tension-Only Cable Nets under Finite Deformations,” Structural and Multidisciplinary Optimization, V. 62, No. 2, Aug., pp. 559-579. doi: 10.1007/s00158-020-02513-7

Schlaich, J.; Schäfer, K.; and Jennewein, M., 1987, “Toward a Consistent Design of Structural Concrete,” PCI Journal, V. 32, No. 3, May-June, pp. 74-150. doi: 10.15554/pcij.05011987.74.150

Victoria, M.; Querin, O. M.; and Martí, P., 2011, “Generation of Strut-and-Tie Models by Topology Design Using Different Material Properties in Tension and Compression,” Structural and Multidisciplinary Optimization, V. 44, No. 2, Aug., pp. 247-258. doi: 10.1007/s00158-011-0633-z

Xia, Y.; Langelaar, M.; and Hendriks, M. A. N., 2020, “A Critical Evaluation of Topology Optimization Results for Strut‐and‐Tie Modeling of Reinforced Concrete,” Computer-Aided Civil and Infrastructure Engineering, V. 35, No. 8, Aug., pp. 850-869. doi: 10.1111/mice.12537

Zhang, X. S.; Paulino, G. H.; and Ramos, A. S. Jr., 2018, “Multi-Material Topology Optimization with Multiple Volume Constraints: A General Approach Applied to Ground Structures with Material Nonlinearity,” Structural and Multidisciplinary Optimization, V. 57, No. 1, Jan., pp. 161-182. doi: 10.1007/s00158-017-1768-3

Zhou, L., and Wan, S., 2021, “Development of Strut-and-Tie Models Using Topology Optimization Based on Modified Optimal Criterion,” Structural Concrete, V. 22, No. 6, Dec., pp. 3304-3314. doi: 10.1002/suco.202100123


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer