Title:
Practical Measurement of Pore Solution Resistivity in Fresh Mixtures
Author(s):
Joseph H. Biever, Krishna Siva Teja Chopperla, O. Burkan Isgor, and W. Jason Weiss
Publication:
Materials Journal
Volume:
120
Issue:
5
Appears on pages(s):
43-52
Keywords:
conductivity; fresh paste; fresh properties; pore solution; pore solution extraction; resistivity
DOI:
10.14359/51738903
Date:
9/1/2023
Abstract:
This study compares techniques to extract pore solution from fresh mixtures to measure the resistivity of the extracted solution. The centrifuge approach for extracting pore solution and conductivity probe for determining pore solution resistivity are practical and have the potential to be used in the field. Pore solution extraction can be done between 30 and 90 minutes after mixing without a statistically significant difference in the measured resistivity. A practical method is proposed to determine the pore solution resistivity from the diluted cement paste samples when the extracted pore solution quantity is not adequate for accurate measurements with a conductivity probe.
Related References:
1. “Concrete Needs to Lose Its Colossal Carbon Footprint,” Nature, V. 597, No. 7878, 2021, pp. 593-594. doi: 10.1038/d41586-021-02612-5
2. Kotzea, D. G.; Brekken, M.; Morris, T.; Ho, W.; Walgenbach, K.; and Mullings, G. M., “2020 NRMCA Fleet Benchmarking and Costs Survey,” Concrete InFocus, 2020, 4 pp.
3. ASTM C94/C94M-16, “Standard Specification for Ready-Mixed Concrete,” ASTM International, West Conshohocken, PA, 2016, 14 pp.
4. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.
5. AASHTO R 101-22, “Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures,” American Association of State Highway and Transportation Officials, Washington, DC, 2022, 14 pp.
6. fib, “CEB-FIP Model Code 1990,” fib Bulletin No. 213/214, International Federation for Structural Concrete, Lausanne, Switzerland, 1993, 460 pp.
7. AASHTO T 318-15 (2019), “Standard Method of Test for Water Content of Freshly Mixed Concrete Using Microwave Oven Drying,” American Association of State Highway and Transportation Officials, Washington, DC, 2019, 6 pp.
8. Robertson, J. B.; Ley, M. T.; and Cook, M. D., “Measuring the Change in Water-to-Cement Ratio in Fresh and Hardened Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 34, No. 4, 2022, 11 pp.
9. Li, Z.; Xiao, L.; and Wei, X., “Determination of Concrete Setting Time Using Electrical Resistivity Measurement,” Journal of Materials in Civil Engineering, ASCE, V. 19, No. 5, 2007, pp. 423-427. doi: 10.1061/(ASCE)0899-1561(2007)19:5(423)
10. Mancio, M.; Moore, J. R.; Brooks, Z.; Monteiro, P. J. M.; and Glaser, S. D., “Instantaneous In-Situ Determination of Water-Cement Ratio of Fresh Concrete,” ACI Materials Journal, V. 107, No. 6, Nov.-Dec. 2010, pp. 586-592.
11. Wei, X., and Li, Z., “Early Hydration Process of Portland Cement Paste by Electrical Measurement,” Journal of Materials in Civil Engineering, ASCE, V. 18, No. 1, 2006, pp. 99-105. doi: 10.1061/(ASCE)0899-1561(2006)18:1(99)
12. Whittington, H. W.; McCarter, J.; and Forde, M. C., “The Conduction of Electricity through Concrete,” Magazine of Concrete Research, V. 33, No. 114, 1981, pp. 48-60. doi: 10.1680/macr.1981.33.114.48
13. AASHTO PP 84-20, “Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures,” American Association of State Highway and Transportation Officials, Washington, DC, 2020, 14 pp.
14. Bu, Y., and Weiss, J., “The Influence of Alkali Content on the Electrical Resistivity and Transport Properties of Cementitious Materials,” Cement and Concrete Composites, V. 51, 2014, pp. 49-58. doi: 10.1016/j.cemconcomp.2014.02.008
15. Archie, G. E., “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics,” Transactions of the AIME, V. 146, 1942, pp. 54-62.
16. Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure, second edition, Academic Press, Cambridge, MA, 1991.
17. McCarter, W. J.; Starrs, G.; and Chrisp, T. M., “Electrical Conductivity, Diffusion, and Permeability of Portland Cement-Based Mortars,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1395-1400. doi: 10.1016/S0008-8846(00)00281-7
18. Tumidajski, P. J.; Schumacher, A. S.; Perron, S.; Gu, P.; and Beaudoin, J. J., “On the Relationship between Porosity and Electrical Resistivity in Cementitious Systems,” Cement and Concrete Research, V. 26, No. 4, 1996, pp. 539-544. doi: 10.1016/0008-8846(96)00017-8
19. Gu, P.; Xie, P.; Beaudoin, J. J.; and Brousseau, R., “A.C. Impedance Spectroscopy (I): A New Equivalent Circuit Model for Hydrated Portland Cement Paste,” Cement and Concrete Research, V. 22, No. 5, 1992, pp. 833-840. doi: 10.1016/0008-8846(92)90107-7
20. Christensen, B. J.; Coverdale, T.; Olson, R. A.; Ford, S. J.; Garboczi, E. J.; Jennings, H. M.; and Mason, T. O., “Impedance Spectroscopy of Hydrating Cement-Based Materials: Measurement, Interpretation, and Application,” Journal of the American Ceramic Society, V. 77, No. 11, 1994, pp. 2789-2804. doi: 10.1111/j.1151-2916.1994.tb04507.x
21. Moradllo, M. K.; Qiao, C.; Isgor, O. B.; Reese, S.; and Weiss, W. J., “Relating Formation Factor of Concrete to Water Absorption,” ACI Materials Journal, V. 115, No. 6, Nov. 2018, pp. 887-898. doi: 10.14359/51706844
22. Rajabipour, F., “Insitu Electrical Sensing and Material Health Monitoring in Concrete Structures,” PhD dissertation, Purdue University, West Lafayette, IN, 2006, 193 pp.
23. Jafari Azad, V.; Erbektas, A. R.; Qiao, C.; Isgor, O. B.; and Weiss, W. J., “Relating the Formation Factor and Chloride Binding Parameters to the Apparent Chloride Diffusion Coefficient of Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 2, 2019, p. 04018392. doi: 10.1061/(ASCE)MT.1943-5533.0002615
24. Qiao, C.; Coyle, A. T.; Isgor, O. B.; and Weiss, W. J., “Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm,” Advances in Civil Engineering Materials, V. 7, No. 1, 2018, pp. 206-220. doi: 10.1520/ACEM20170141
25. McCarter, W. J., and Puyrigaud, P., “Water Content Assessment of Fresh Concrete,” Proceedings of the Institution of Civil Engineers—Structures and Buildings, V. 110, No. 4, 1995, pp. 417-425. doi: 10.1680/istbu.1995.28059
26. Sallehi, H.; Ghods, P.; and Isgor, O. B., “Formation Factor of Fresh Cementitious Pastes,” Cement and Concrete Composites, V. 91, 2018, pp. 174-188. doi: 10.1016/j.cemconcomp.2018.05.011
27. Sant, G.; Rajabipour, F.; Fishman, P.; Lura, P.; and Weiss, W. J., “Electrical Conductivity Measurements in Cement Paste at Early Ages: A Discussion of the Contribution of Pore Solution Conductivity, Volume, and Connectivity to the Overall Electrical Response,” International RILEM Workshop on Advanced Testing of Fresh Cementitious Materials, Stuttgart, Germany, 2006, 9 pp.
28. Castro, J.; Spragg, R.; Kompare, P.; and Weiss, W. J., “Portland Cement Concrete Pavement Permeability Performance,” Report No. FHWA/IN/JTRP-2010/29, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, IN, 2010, 258 pp.
29. Kompare, P., “Electrical and Relative Humidity Measurements of Concrete and Their Relation to Transport Properties,” master’s thesis, Purdue University, West Lafayette, IN, 2015, 124 pp.
30. Rajabipour, F.; Sant, G.; and Weiss, W. J., “Development of Electrical Conductivity-Based Sensors for Health Monitoring of Concrete Materials,” Transportation Research Board 86th Annual Meeting, 2007, 16 pp.
31. Chrisp, T. M.; Starrs, G.; McCarter, W. J.; Rouchotas, E.; and Blewett, J., “Temperature-Conductivity Relationships for Concrete: An Activation Energy Approach,” Journal of Materials Science Letters, V. 20, No. 12, 2001, pp. 1085-1087. doi: 10.1023/A:1010926426753
32. Liu, Y., and Presuel-Moreno, F. J., “Normalization of Temperature Effect on Concrete Resistivity by Method Using Arrhenius Law,” ACI Materials Journal, V. 111, No. 4, July-Aug. 2014, pp. 433-442. doi: 10.14359/51686725
33. McCarter, W. J.; Chrisp, T. M.; Starrs, G.; Basheer, P. A. M.; and Blewett, J., “Field Monitoring of Electrical Conductivity of Cover-Zone Concrete,” Cement and Concrete Composites, V. 27, No. 7-8, 2005, pp. 809-817.
34. Morsy, M. S., “Effect of Temperature on Electrical Conductivity of Blended Cement Pastes,” Cement and Concrete Research, V. 29, No. 4, 1999, pp. 603-606. doi: 10.1016/S0008-8846(98)00198-7
35. Villagrán Zaccardi, Y. A.; Fullea García, J.; Huélamo, P.; and Di Maio, Á. A., “Influence of Temperature and Humidity on Portland Cement Mortar Resistivity Monitored with Inner Sensors,” Materials and Corrosion, V. 60, No. 4, 2009, pp. 294-299. doi: 10.1002/maco.200805075
36. Obla, K.; Kong, R.; Sherman, S.; Bentz, D. P.; and Jones, S. Z., “Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions,” Advances in Civil Engineering Materials, V. 7, No. 1, 2018, pp. 71-86.
37. NIST, “Estimation of Pore Solution Conductivity,” online calculator, National Institute of Standards and Technology, Gaithersburg, MD, 2019.
38. Bharadwaj, K.; Chopperla, K. S. T.; Choudhary, A.; Glosser, D.; Ghantous, R. M.; Vasudevan, G. D.; Ideker, J. H.; Isgor, O. B.; Trejo, D.; and Weiss, W. J., “CALTRANS: Impact of the Use of Portland-Limestone Cement on Concrete Performance as Plain or Reinforced Material - Final Report,” Oregon State University, Corvallis, OR, 2021, 320 pp.
39. Bharadwaj, K.; Ghantous, R. M.; Sahan, F.; Isgor, O. B.; and Weiss, W. J., “Predicting Pore Volume, Compressive Strength, Pore Connectivity, and Formation Factor in Cementitious Pastes Containing Fly Ash,” Cement and Concrete Composites, V. 122, 2021, Article No. 104113. doi: 10.1016/j.cemconcomp.2021.104113
40. Bharadwaj, K.; Glosser, D.; Moradllo, M. K.; Isgor, O. B.; and Weiss, W. J., “Toward the Prediction of Pore Volumes and Freeze-Thaw Performance of Concrete Using Thermodynamic Modelling,” Cement and Concrete Research, V. 124, 2019, Article No. 105820. doi: 10.1016/j.cemconres.2019.105820
41. Bharadwaj, K.; Isgor, O. B.; and Weiss, W. J., “Supplementary Cementitious Materials in Portland-Limestone Cements,” ACI Materials Journal, V. 119, No. 2, Mar. 2022, pp. 141-154.
42. Bharadwaj, K.; Isgor, O. B.; and Weiss, W. J., “Pozzolanic Reactivity of Supplementary Cementitious Materials,” ACI Materials Journal, V. 120, No. 4, July 2023, pp. 63-76.
43. Bharadwaj, K.; Isgor, O. B.; and Weiss, W. J., “A Simplified Approach to Determine Pozzolanic Reactivity of Commercial Supplementary Cementitious Materials,” Concrete International, V. 44, No. 1, Jan. 2022, pp. 27-32.
44. Bharadwaj, K.; Isgor, O. B.; Weiss, W. J.; Chopperla, K. S. T.; Choudhary, A.; Vasudevan, G. D.; Glosser, D.; Ideker, J. H.; and Trejo, D., “A New Mixture Proportioning Method for Performance-Based Concrete,” ACI Materials Journal, V. 119, No. 2, Mar. 2022, pp. 207-220.
45. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001
46. Lothenbach, B.; Matschei, T.; Möschner, G.; and Glasser, F. P., “Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement,” Cement and Concrete Research, V. 38, No. 1, 2008, pp. 1-18. doi: 10.1016/j.cemconres.2007.08.017
47. Choudhary, A.; Bharadwaj, K.; Ghantous, R. M.; Isgor, O. B.; and Weiss, W. J., “Pozzolanic Reactivity Test of Supplementary Cementitious Materials,” ACI Materials Journal, V. 119, No. 2, Mar. 2022, pp. 255-268.
48. Lothenbach, B.; Le Saout, G.; Gallucci, E.; and Scrivener, K., “Influence of Limestone on the Hydration of Portland Cements,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 848-860. doi: 10.1016/j.cemconres.2008.01.002
49. Isgor, O. B., and Weiss, W. J., “A Nearly Self-Sufficient Framework for Modelling Reactive-Transport Processes in Concrete,” Materials and Structures, V. 52, No. 1, 2019, Article No. 3. doi: 10.1617/s11527-018-1305-x
50. Zanella, R.; Primel, E. G.; and Martins, A. F., “Determination of Chloride and Sulfate in Pore Solutions of Concrete by Ion Chromatography,” Journal of Separation Science, V. 24, No. 3, 2001, pp. 230-231. doi: 10.1002/1615-9314(20010301)24:33.0.CO;2-8
51. Byfors, K.; Hansson, C. M.; and Tritthart, J., “Pore Solution Expression as a Method to Determine the Influence of Mineral Additives on Chloride Binding,” Cement and Concrete Research, V. 16, No. 5, 1986, pp. 760-770. doi: 10.1016/0008-8846(86)90050-5
52. Caruso, F.; Mantellato, S.; Palacios, M.; and Flatt, R. J., “ICP-OES Method for the Characterization of Cement Pore Solutions and Their Modification by Polycarboxylate-Based Superplasticizers,” Cement and Concrete Research, V. 91, 2017, pp. 52-60. doi: 10.1016/j.cemconres.2016.10.007
53. Bonta, M.; Eitzenberger, A.; Burtscher, S.; and Limbeck, A., “Quantification of Chloride in Concrete Samples Using LA-ICP-MS,” Cement and Concrete Research, V. 86, 2016, pp. 78-84. doi: 10.1016/j.cemconres.2016.05.002
54. Tsui-Chang, M.; Suraneni, P.; Montanari, L.; Muñoz, J. F.; and Weiss, W. J., “Determination of Chemical Composition and Electrical Resistivity of Expressed Cementitious Pore Solutions Using X-Ray Fluorescence,” ACI Materials Journal, V. 116, No. 1, Jan. 2019, pp. 155-164. doi: 10.14359/51712242
55. Tsui Chang, M.; Suraneni, P.; Isgor, O. B.; Trejo, D.; and Weiss, W. J., “Using X-Ray Fluorescence to Assess the Chemical Composition and Resistivity of Simulated Cementitious Pore Solutions,” International Journal of Advances in Engineering Sciences and Applied Mathematics, V. 9, No. 3, 2017, pp. 136-143. doi: 10.1007/s12572-017-0181-x
56. ASTM C150/C150M-19a, “Standard Specification for Portland Cement,” ASTM International, West Conshohocken, PA, 2019, 10 pp.
57. Sallehi, H.; Ghods, P.; and Isgor, O. B., “Formation Factor of Fresh Cementitious Pastes,” Cement and Concrete Composites, V. 91, 2018, pp. 174-188. doi: 10.1016/j.cemconcomp.2018.05.011
58. Barneyback, R. S. Jr., and Diamond, S., “Expression and Analysis of Pore Fluids from Hardened Cement Pastes and Mortars,” Cement and Concrete Research, V. 11, No. 2, 1981, pp. 279-285. doi: 10.1016/0008-8846(81)90069-7
59. Cyr, M.; Rivard, P.; Labrecque, F.; and Daidié, A., “High‐Pressure Device for Fluid Extraction from Porous Materials: Application to Cement‐Based Materials,” Journal of the American Ceramic Society, V. 91, No. 8, 2008, pp. 2653-2658. doi: 10.1111/j.1551-2916.2008.02525.x
60. Spragg, R.; Bu, Y.; Snyder, K.; Bentz, D.; and Weiss, J., “Electrical Testing of Cement-Based Materials: Role of Testing Techniques, Sample Conditioning, and Accelerated Curing,” Report No. FHWA/IN/JTRP-2013/28, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, IN, 2013, 27 pp.
61. Longuet, P.; Burglen, L.; and Zelwer, A., “The Liquid Phase of Hydrated Cement,” Revue des Matériaux de Construction et de Travaux Publics, V. 676, 1973, pp. 35-41.
62. Moret-Fernández, D.; Vicente, J.; Aragüés, R.; Peña, C.; and López, M. V., “A New TDR Probe for Measurements of Soil Solution Electrical Conductivity,” Journal of Hydrology, V. 448-449, 2012, pp. 73-79. doi: 10.1016/j.jhydrol.2012.04.042
63. Scudiero, E.; Berti, A.; Teatini, P.; and Morari, F., “Simultaneous Monitoring of Soil Water Content and Salinity with a Low-Cost Capacitance-Resistance Probe,” Sensors, V. 12, No. 12, 2012, pp. 17588-17607. doi: 10.3390/s121217588
64. Tsui Chang, M., “The Evaluation of Cementitious Pore Solution Composition and Electrical Resistivity Using X-ray Fluorescence (XRF),” master’s thesis, Oregon State University, Corvallis, OR, 2017.
65. Spragg, R.; Villani, C.; Snyder, K.; Bentz, D.; Bullard, J. W.; and Weiss, J., “Factors That Influence Electrical Resistivity Measurements in Cementitious Systems,” Transportation Research Record: Journal of the Transportation Research Board, V. 2342, No. 1, 2013, pp. 90-98. doi: 10.3141/2342-11
66. Coyle, A. T.; Spragg, R. P.; Suraneni, P.; Amirkhanian, A. N.; Tsui-Chang, M.; and Weiss, W. J., “Activation Energy of Conduction for Use in Temperature Corrections on Electrical Measurements of Concrete,” Advances in Civil Engineering Materials, V. 8, No. 1, 2019, pp. 158-170. doi: 10.1520/ACEM20180045
67. Coyle, A. T.; Spragg, R. P.; Suraneni, P.; Amirkhanian, A. N.; and Weiss, W. J., “Comparison of Linear Temperature Corrections and Activation Energy Temperature Corrections for Electrical Resistivity Measurements of Concrete,” Advances in Civil Engineering Materials, V. 7, No. 1, 2018, pp. 174-187. doi: 10.1520/ACEM20170135
68. Snyder, K. A.; Feng, X.; Keen, B. D.; and Mason, T. O., “Estimating the Electrical Conductivity of Cement Paste Pore Solutions from OH–, K+ and Na+ Concentrations,” Cement and Concrete Research, V. 33, No. 6, 2003, pp. 793-798. doi: 10.1016/S0008-8846(02)01068-2
69. Horvath, A. L., Handbook of Aqueous Electrolyte Solutions: Physical Properties, Estimation, and Correlation Methods, Halsted Press, New York, 1985, 631 pp.
70. Samson, E.; Lemaire, G.; Marchand, J.; and Beaudoin, J. J., “Modeling Chemical Activity Effects in Strong Ionic Solutions,” Computational Materials Science, V. 15, No. 3, 1999, pp. 285-294. doi: 10.1016/S0927-0256(99)00017-8
71. Lura, P.; Friedemann, K.; Stallmach, F.; Mönnig, S.; Wyrzykowski, M.; and Esteves, L. P., “Kinetics of Water Migration in Cement-Based Systems Containing Superabsobent Polymers,” Application of Super Absorbent Polymers (SAP) in Concrete Construction: State-of-the-Art Report Prepared by Technical Committee 225-SAP, V. Mechtcherine and H.-W. Reinhardt, eds., Springer, Dordrecht, the Netherlands, 2012, pp. 21-37.
72. Taylor, H. F. W., “A Method for Predicting Alkali Ion Concentrations in Cement Pore Solutions,” Advances in Cement Research, V. 1, No. 1, 1987, pp. 5-17. doi: 10.1680/adcr.1987.1.1.5
73. Tennis, P., Chemical and Physical Characteristics of U.S. Hydraulic Cements, Portland Cement Association, Skokie, IL, 2016, 27 pp.
74. Bharadwaj, K.; Isgor, O. B.; and Weiss, W. J., “A Dataset Containing Statistical Compositions and Reactivities of Commercial and Novel Supplementary Cementitious Materials,” Dataset Version 1.0, Oregon State University, Corvallis, OR, 2022, 24 pp.