Title:
Nano Engineering the Interfacial Properties of PVA Fibers in Strain-Hardening Cementitious Composites
Author(s):
Ousmane Hisseine
Publication:
Web Session
Volume:
Issue:
Appears on pages(s):
Keywords:
DOI:
Date:
10/23/2022
Abstract:
Nano-engineering concrete properties has now emerged as a novel tool for the deployment of advanced cementitious composites necessary for the 21st century civil infrastructure. This study is aimed at characterizing the interface properties of polyvinyl-alcohol (PVA) fibers in strain-hardening cementitious composites (SHCC) incorporating high-volume GP (HVGP) at 0-100% replacement of FA. Single fiber pull-out tests were conducted to characterize the interface properties (i.e., frictional bond, chemical bond, and slip-hardening coefficient) necessary for micromechanical tailoring of SHCC. Results indicate that nanomodification of SHCC matrix and interface properties using nanocellulose (at rates of 0.03-0.10% per cement mass) enabled to significantly alter the pull-out behavior. In fact, the common frictional sliding behavior is shifted to a slip-hardening behavior due to a twofold mechanism imparted by nanomodification (i) meshing the matrix, and (ii) creating a jamming effect, interfering with the pull-out of PVA fibers. This characteristic slip-hardening effect contributed towards enhancing the strain-hardening capacity of SHCC as experimentally validated by uniaxial tensile tests.