Predicting Fracture from Thermodynamic Modeling of Cementitious Systems

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Predicting Fracture from Thermodynamic Modeling of Cementitious Systems

Author(s): Y. Wang, K. Bharadwaj, H. S. Esmaeeli, P. Zavattieri, O. B. Isgor, and W. J. Weiss

Publication: Materials Journal

Volume: 120

Issue: 2

Appears on pages(s): 105-118

Keywords: elastic modulus; finite element analysis (FEA); fracture; mechanics; porosity; tensile strength; thermodynamic modeling

DOI: 10.14359/51738493

Date: 3/1/2023

Abstract:
This paper describes an approach to predict the mechanical and fracture behavior of cement-based systems by combining thermodynamic and finite element analysis models. First, the reaction products in a hydrated cementitious paste are predicted using a thermodynamic model. Second, a pore partitioning model is used to segment the total porosity into porosity associated with gel pores and capillary pores. A property-porosity relationship is used to predict the elastic modulus, tensile strength, and fracture energy of the hardened cement paste. The paste’s modulus, fracture energy, and tensile strength, along with information on the aggregate properties and interfacial transition zone properties, are used as inputs to a finite element analysis model to predict the flexural strength and fracture response of mortars.

Related References:

1. UN Environment, Scrivener, K. L.; John, V. M.; and Gartner, E. M., “Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry,” Cement and Concrete Research, V. 114, 2018, pp. 2-26. doi: 10.1016/j.cemconres.2018.03.015

2. Miller, S. A.; John, V. M.; Pacca, S. A.; and Horvath, A., “Carbon Dioxide Reduction Potential in the Global Cement Industry By 2050,” Cement and Concrete Research, V. 114, 2018, pp. 115-124. doi: 10.1016/j.cemconres.2017.08.026

3. Juenger, M.; Provis, J. L.; Elsen, J.; Matthes, W.; Hooton, R. D.; Duchesne, J.; Courard, L.; He, H.; Michel, F.; Snellings, R.; and De Belie, N., “Supplementary Cementitious Materials for Concrete: Characterization Needs,” MRS Online Proceedings Library, V. 1488, 2012, pp. 8-22.

4. Juenger, M. C. G.; Winnefeld, F.; Provis, J. L.; and Ideker, J. H., “Advances in Alternative Cementitious Binders,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1232-1243. doi: 10.1016/j.cemconres.2010.11.012

5. Juenger, M. C. G.; Snellings, R.; and Bernal, S. A., “Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights,” Cement and Concrete Research, V. 122, 2019, pp. 257-273. doi: 10.1016/j.cemconres.2019.05.008

6. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001

7. Tennis, P. D.; Thomas, M. D. A.; and Weiss, W. J., “State-of-the-Art Report on Use of Limestone in Cements at Levels of Up to 15%,” PCA R&D SN3148, Portland Cement Association, Skokie, IL, 2011, 78 pp.

8. Bharadwaj, K.; Isgor, O. B.; Weiss, J. W.; Chopperla, K. S. T.; Choudhary, A.; Vasudevan, G. D.; Glosser, D.; Ideker, J. H.; and Trejo, D., “A New Mixture Proportioning Method for Performance-Based Concrete,” ACI Materials Journal, V. 119, No. 2, Mar. 2022, pp. 207-220.

9. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw Hill, New York, 2006, 684 pp.

10. Mindess, S.; Young, J. F.; and Darwin, D., Concrete, second edition, Pearson Education, Inc., Hoboken, NJ, 2003, 657 pp.

11. de Larrard, F., Concrete Mixture Proportioning: A Scientific Approach, CRC Press, New York, 1999, 448 pp.

12. ACI Committee 211, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91) (Reapproved 2009),” American Concrete Institute, Farmington Hills, MI, 1991, 38 pp.

13. Thomas, M., “Optimizing the Use of Fly Ash in Concrete,” Publication IS548, Portland Cement Association, Skokie, IL, 2007, 24 pp.

14. Thomas M., Supplementary Cementing Materials in Concrete, CRC Press, Boca Raton, FL, 2013, 210 pp.

15. Zajac, M.; Skocek, J.; Adu-Amankwah, S.; Black, L.; and Haha, M. B., “Impact of Microstructure on the Performance of Composite Cements: Why Higher Total Porosity Can Result in Higher Strength,” Cement and Concrete Composites, V. 90, 2018, pp. 178-192. doi: 10.1016/j.cemconcomp.2018.03.023

16. Bharadwaj, K.; Chopperla, K. S. T.; Choudhary, A.; Glosser, D.; Ghantous, R. M.; Vasudevan, G. D.; Ideker, J. H.; Isgor, O. B.; Trejo, D.; and Weiss, W. J., “CALTRANS: Impact of the Use of Portland-Limestone Cement on Concrete Performance as Plain or Reinforced Material - Final Report,” Oregon State University, Corvallis, OR, 2021, 320 pp., https://ir.library.oregonstate.edu/concern/articles/7h149x67f. (last accessed Feb. 16, 2023)

17. Bharadwaj, K.; Glosser, D.; Moradllo, M. K.; Isgor, O. B.; and Weiss, W. J., “Toward the Prediction of Pore Volumes and Freeze-Thaw Performance of Concrete Using Thermodynamic Modelling,” Cement and Concrete Research, V. 124, 2019, Article No. 105820. doi: 10.1016/j.cemconres.2019.105820

18. Lam, L.; Wong, Y.; and Poon, C. S., “Degree of Hydration and Gel/Space Ratio of High-Volume Fly Ash/Cement Systems,” Cement and Concrete Research, V. 30, No. 5, 2000, pp. 747-756. doi: 10.1016/S0008-8846(00)00213-1

19. American Coal Ash Association, “Ash at Work: Applications, Science, and Sustainability of Coal Ash,” Farmington Hills, MI, 2020, 199 pp.

20. Isgor, O. B.; Ideker, J.; Trejo, D.; Weiss, J. W.; Bharadwaj, K.; Choudhary, A.; Teja, C. K. S.; Glosser, D.; and Vasudevan, G., “Development of a Performance-Based Mixture Proportioning Procedure for Concrete Incorporating Off-Spec Fly Ash,” Report No. 000000003002018795, Energy Power Research Institute (EPRI), Palo Alto, CA, 2020, 78 pp.

21. Bahurudeen, A.; Kanraj, D.; Dev, V. G.; and Santhanam, M., “Performance Evaluation of Sugarcane Bagasse Ash Blended Cement in Concrete,” Cement and Concrete Composites, V. 59, 2015, pp. 77-88. doi: 10.1016/j.cemconcomp.2015.03.004

22. Bahurudeen, A.; Marckson, A. V.; Kishore, A.; and Santhanam, M., “Development of Sugarcane Bagasse Ash Based Portland Pozzolana Cement and Evaluation of Compatibility With Superplasticizers,” Construction and Building Materials, V. 68, 2014, pp. 465-475. doi: 10.1016/j.conbuildmat.2014.07.013

23. Bahurudeen, A., and Santhanam, M., “Influence of Different Processing Methods on the Pozzolanic Performance of Sugarcane Bagasse Ash,” Cement and Concrete Composites, V. 56, 2015, pp. 32-45. doi: 10.1016/j.cemconcomp.2014.11.002

24. Clavier, K. A.; Paris, J. M.; Ferraro, C. C.; and Townsend, T. G., “Opportunities and Challenges Associated With Using Municipal Waste Incineration Ash as a Raw Ingredient in Cement Production–A Review,” Resources, Conservation and Recycling, V. 160, 2020, Article No. 104888. doi: 10.1016/j.resconrec.2020.104888

25. Hogan, F. J., and Meusel, J. W., “Evaluation for Durability and Strength Development of a Ground Granulated Blast Furnace Slag,” Cement, Concrete and Aggregates, V. 3, No. 1, 1981, pp. 40-52. doi: 10.1520/CCA10201J

26. Seraj, S.; Cano, R.; Ferron, R. D.; and Juenger, M. C. G., “The Role of Particle Size on the Performance of Pumice as a Supplementary Cementitious Material,” Cement and Concrete Composites, V. 80, 2017, pp. 135-142. doi: 10.1016/j.cemconcomp.2017.03.009

27. Diaz-Loya, I.; Juenger, M.; Seraj, S.; and Minkara, R., “Extending Supplementary Cementitious Material Resources: Reclaimed and Remediated Fly Ash and Natural Pozzolans,” Cement and Concrete Composites, V. 101, 2019, pp. 44-51. doi: 10.1016/j.cemconcomp.2017.06.011

28. Kalina, R. D.; Al-Shmaisani, S.; Ferron, R. D.; and Juenger, M. C. G., “False Positives in ASTM C618 Specifications for Natural Pozzolans,” ACI Materials Journal, V. 116, No. 1, Jan. 2019, pp. 165-172. doi: 10.14359/51712243

29. Seraj, S., “Evaluating Natural Pozzolans for Use as Alternative Supplementary Cementitious Materials in Concrete,” PhD thesis, The University of Texas at Austin, Austin, TX, 2014, 176 pp.

30. Kulik, D. A.; Miron, G. D.; and Lothenbach, B., “A Structurally-Consistent CASH+ Sublattice Solid Solution Model For Fully Hydrated C-S-H Phases: Thermodynamic Basis, Methods, and Ca-Si-H2O Core Sub-Model,” Cement and Concrete Research, V. 151, 2022, Article No. 106585. doi: 10.1016/j.cemconres.2021.106585

31. Lothenbach, B., and Gruskovnjak, A., “Hydration of Alkali-Activated Slag: Thermodynamic Modelling,” Advances in Cement Research, V. 19, No. 2, 2007, pp. 81-92. doi: 10.1680/adcr.2007.19.2.81

32. Lothenbach, B.; Kulik, D. A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G. D.; and Myers, R. J., “Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials,” Cement and Concrete Research, V. 115, 2019, pp. 472-506. doi: 10.1016/j.cemconres.2018.04.018

33. Lothenbach, B.; Matschei, T.; Möschner, G.; and Glasser, F. P., “Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement,” Cement and Concrete Research, V. 38, No. 1, 2008, pp. 1-18. doi: 10.1016/j.cemconres.2007.08.017

34. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001

35. Lothenbach, B., and Zajac, M., “Application of Thermodynamic Modelling to Hydrated Cements,” Cement and Concrete Research, V. 123, 2019, Article No. 105779.

36. Myers, R. J.; Bernal, S. A.; and Provis, J. L., “A Thermodynamic Model for C-(N-)A-S-H Gel: CNASH_ss. Derivation and Validation,” Cement and Concrete Research, V. 66, 2014, pp. 27-47. doi: 10.1016/j.cemconres.2014.07.005

37. Myers, R. J.; Lothenbach, B.; Bernal, S. A.; and Provis, J. L., “Thermodynamic Modelling of Alkali-Activated Slag Cements,” Applied Geochemistry, V. 61, 2015, pp. 233-247. doi: 10.1016/j.apgeochem.2015.06.006

38. Azad, V. J.; Suraneni, P.; Isgor, O.; and Weiss, W. J., “Interpreting the Pore Structure of Hydrating Cement Phases Through a Synergistic Use of the Powers-Brownyard Model, Hydration Kinetics, and Thermodynamic Calculations,” Advances in Civil Engineering Materials, V. 6, No. 1, 2017, pp. 1-16.

39. Glosser, D.; Azad, V. J.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “An Extension of the Powers-Brownyard Model to Pastes Containing Supplementary Cementitious Materials,” ACI Materials Journal, V. 116, No. 5, Sept. 2019, pp. 205-216. doi: 10.14359/51714466

40. Bharadwaj, K.; Ghantous, R. M.; Sahan, F.; Isgor, O. B.; and Weiss, W. J., “Predicting Pore Volume, Compressive Strength, Pore Connectivity, and Formation Factor in Cementitious Pastes Containing Fly Ash,” Cement and Concrete Composites, V. 122, 2021, Article No. 104113. doi: 10.1016/j.cemconcomp.2021.104113

41. Bharadwaj, K.; Ghantous, R. M.; Sahan, F. N.; Isgor, O. B.; and Weiss, W. J., “Toward the Prediction of Pore Volumes and Compressive Strength of Concrete Using Thermodynamic Modelling,” 6th International Conference on Construction Materials, Fukuoka, Japan, 2020.

42. Bharadwaj, K.; Isgor, O. B.; and Weiss, W. J., “Interpretation of the Results of the Pozzolanic Reactivity Test for Supplementary Cementitious Materials: Insights From Thermodynamic Modeling,” Cement and Concrete Composites, 2022. (in review)

43. Bharadwaj, K.; Isgor, O. B.; and Weiss, W. J., “A Simplified Approach to Determine the Pozzolanic Reactivity of Commercial Supplementary Cementitious Materials,” Concrete International, V. 44, No. 1, Jan. 2022, pp. 27-32.

44. Suraneni, P., and Weiss, J., “Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis,” Cement and Concrete Composites, V. 83, 2017, pp. 273-278. doi: 10.1016/j.cemconcomp.2017.07.009

45. Isgor, O. B., and Weiss, W. J., “A Nearly Self-Sufficient Framework for Modelling Reactive-Transport Processes in Concrete,” Materials and Structures, V. 52, No. 6, 2019, Article No. 130. doi: 10.1617/s11527-019-1422-1

46. Powers, T. C., “Structure and Physical Properties of Hardened Portland Cement Paste,” Journal of the American Ceramic Society, V. 41, No. 1, 1958, pp. 1-6. doi: 10.1111/j.1151-2916.1958.tb13494.x

47. Pichler, B., and Hellmich, C., “Upscaling Quasi-Brittle Strength of Cement Paste and Mortar: A Multi-Scale Engineering Mechanics Model,” Cement and Concrete Research, V. 41, No. 5, 2011, pp. 467-476. doi: 10.1016/j.cemconres.2011.01.010

48. Pichler, B.; Hellmich, C.; and Eberhardsteiner, J., “Spherical and Acicular Representation of Hydrates in a Micromechanical Model for Cement Paste: Prediction of Early-Age Elasticity and Strength,” Acta Mechanica, V. 203, No. 3-4, 2009, pp. 137-162. doi: 10.1007/s00707-008-0007-9

49. Pichler, B.; Hellmich, C.; Eberhardsteiner, J.; Wasserbauer, J.; Termkhajornkit, P.; Barbarulo, R.; and Chanvillard, G., “The Counteracting Effects of Capillary Porosity and of Unhydrated Clinker Grains on the Macroscopic Strength of Hydrating Cement Paste–A Multiscale Model,” Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete: A Tribute to Zdeněk P. Bažant, U. Franz-Josef, J. M. Hamlin, and R. J.-M. Pellenq, eds., 2013, pp. 40-47.

50. Pichler, B.; Hellmich, C.; Eberhardsteiner, J.; Wasserbauer, J.; Termkhajornkit, P.; Barbarulo, R.; and Chanvillard, G., “Effect of Gel-Space Ratio and Microstructure on Strength of Hydrating Cementitious Materials: An Engineering Micromechanics Approach,” Cement and Concrete Research, V. 45, 2013, pp. 55-68. doi: 10.1016/j.cemconres.2012.10.019

51. Termkhajornkit, P.; Vu, Q. H.; Barbarulo, R.; Daronnat, S.; and Chanvillard, G., “Dependence of Compressive Strength on Phase Assemblage in Cement Pastes: Beyond Gel–Space Ratio—Experimental Evidence and Micromechanical Modeling,” Cement and Concrete Research, V. 56, 2014, pp. 1-11. doi: 10.1016/j.cemconres.2013.10.007

52. Princigallo, A.; Lura, P.; van Breugel, K.; and Levita, G., “Early Development of Properties in a Cement Paste: A Numerical and Experimental Study,” Cement and Concrete Research, V. 33, No. 7, 2003, pp. 1013-1020. doi: 10.1016/S0008-8846(03)00002-4

53. Carpinteri, A., and Accornero, F., “Rotation Versus Curvature Fractal Scaling in Bending Failure,” Physical Mesomechanics, V. 22, No. 1, 2019, pp. 46-51.

54. Esmaeeli, H. S.; Shishehbor, M.; Weiss, W. J.; and Zavattieri, P. D., “A Two-Step Multiscale Model to Predict Early Age Strength Development of Cementitious Composites Considering Competing Fracture Mechanisms,” Construction and Building Materials, V. 208, 2019, pp. 577-600.

55. Bažant, Z. P., and Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials, Taylor & Francis, New York, 2019, 640 pp.

56. Lilliu, G., and van Mier, J. G. M., “3D Lattice Type Fracture Model for Concrete,” Engineering Fracture Mechanics, V. 70, No. 7-8, 2003, pp. 927-941. doi: 10.1016/S0013-7944(02)00158-3

57. Shah, S. P.; Swartz, S. E.; and Ouyang, C., Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials, John Wiley & Sons, Inc., New York, 1995, 588 pp.

58. Wriggers, P., and Moftah, S. O., “Mesoscale Models for Concrete: Homogenisation and Damage Behaviour,” Finite Elements in Analysis and Design, V. 42, No. 7, 2006, pp. 623-636. doi: 10.1016/j.finel.2005.11.008

59. Lothenbach, B.; Le Saout, G.; Gallucci, E.; and Scrivener, K., “Influence of Limestone on the Hydration of Portland Cements,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 848-860. doi: 10.1016/j.cemconres.2008.01.002

60. Lothenbach, B.; Winnefeld, F.; Alder, C.; Wieland, E.; and Lunk, P., “Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes,” Cement and Concrete Research, V. 37, No. 4, 2007, pp. 483-491. doi: 10.1016/j.cemconres.2006.11.016

61. Jelitto, H., and Schneider, G. A., “A Geometric Model for the Fracture Toughness of Porous Materials,” Acta Materialia, V. 151, 2018, pp. 443-453. doi: 10.1016/j.actamat.2018.03.018

62. Jelitto, H., and Schneider, G. A., “Fracture Toughness of Porous Materials–Experimental Methods and Data,” Data in Brief, V. 23, 2019, Article No. 103709. doi: 10.1016/j.dib.2019.103709

63. Kulik, D. A.; Wagner, T.; Dmytrieva, S. V.; Kosakowski, G.; Hingerl, F. F.; Chudnenko, K. V.; and Berner, U. R., “GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes,” Computational Geosciences, V. 17, No. 1, 2013, pp. 1-24.

64. Deschner, F.; Lothenbach, B.; Winnefeld, F.; and Neubauer, J., “Effect of Temperature on the Hydration of Portland Cement Blended With Siliceous Fly Ash,” Cement and Concrete Research, V. 52, 2013, pp. 169-181. doi: 10.1016/j.cemconres.2013.07.006

65. Kulik, D. A., “Improving the Structural Consistency of C-S-H Solid Solution Thermodynamic Models,” Cement and Concrete Research, V. 41, No. 5, 2011, pp. 477-495. doi: 10.1016/j.cemconres.2011.01.012

66. Glosser, D.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Estimating Reaction Kinetics of Cementitious Pastes Containing Fly Ash,” Cement and Concrete Composites, V. 112, 2020, Article No. 103655. doi: 10.1016/j.cemconcomp.2020.103655

67. Taylor, H. F. W., Cement Chemistry, Thomas Telford, London, UK, 1997, 459 pp.

68. Powers, T. C., and Brownyard, T. L., “Studies of the Physical Properties of Hardened Portland Cement Paste,” ACI Journal Proceedings, V. 43, No. 9, Nov. 1946, pp. 249-336.

69. Chandler, H. W.; Merchant, I. J.; Henderson, R. J.; and Macphee, D. E., “Enhanced Crack-Bridging by Unbonded Inclusions in a Brittle Matrix,” Journal of the European Ceramic Society, V. 22, No. 1, 2002, pp. 129-134. doi: 10.1016/S0955-2219(01)00242-4

70. Liu, D.; Šavija, B.; Smith, G. E.; Flewitt, P. E. J.; Lowe, T.; and Schlangen, E., “Towards Understanding the Influence of Porosity on Mechanical and Fracture Behaviour of Quasi-Brittle Materials: Experiments and Modelling,” International Journal of Fracture, V. 205, No. 1, 2017, pp. 57-72. doi: 10.1007/s10704-017-0181-7

71. Birchall, J. D.; Howard, A. J.; and Kendall, K., “Flexural Strength and Porosity Of Cements,” Nature, V. 289, No. 5796, 1981, pp. 388-390. doi: 10.1038/289388a0

72. Dugdale, D. S., “Yielding of Steel Sheets Containing Slits,” Journal of the Mechanics and Physics of Solids, V. 8, No. 2, 1960, pp. 100-104. doi: 10.1016/0022-5096(60)90013-2

73. Barenblatt, G. I., “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Advances in Applied Mechanics, V. 7, 1962, pp. 55-129. doi: 10.1016/S0065-2156(08)70121-2

74. Hillerborg, A.; Modéer, M.; and Petersson, P.-E., “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement and Concrete Research, V. 6, No. 6, 1976, pp. 773-781. doi: 10.1016/0008-8846(76)90007-7

75. Hibbit, H. D.; Karlsson, B.; and Sorensen, E., “Abaqus Analysis User’s Manual,” Version 6.12, Simulia, Providence, RI, 2012.

76. ASTM C305-20, “Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency,” ASTM International, West Conshohocken, PA, 2020, 3 pp.

77. Fu, T., and Weiss, W. J., “The Ball-On-Three-Ball (B3B) Test–Application to Cement Paste and Mortar,” Advances in Civil Engineering Materials, V. 9, No. 1, 2020, pp. 128-142. doi: 10.1520/ACEM20180070

78. Swamy, R. N., “Dynamic Poisson’s Ratio of Portland Cement Paste, Mortar and Concrete,” Cement and Concrete Research, V. 1, No. 5, 1971, pp. 559-583. doi: 10.1016/0008-8846(71)90060-3

79. Börger, A.; Supancic, P.; and Danzer, R., “The Ball on Three Balls Test for Strength Testing of Brittle Discs: Stress Distribution in the Disc,” Journal of the European Ceramic Society, V. 22, No. 9-10, 2002, pp. 1425-1436. doi: 10.1016/S0955-2219(01)00458-7

80. Erbektas, A. R.; Isgor, O. B.; and Weiss, J. W., “Comparison of Chemical and Biogenic Acid Attack on Concrete,” ACI Materials Journal, V. 117, No. 1, Jan. 2020, pp. 255-264. doi: 10.14359/51720293

81. Fu, T.; Montes, F.; Suraneni, P.; Youngblood, J.; and Weiss, J., “The Influence of Cellulose Nanocrystals on the Hydration and Flexural Strength of Portland Cement Pastes,” Polymers, V. 9, No. 9, 2017, Article No. 424. doi: 10.3390/polym9090424

82. Qiao, C.; Suraneni, P.; and Weiss, J., “Flexural Strength Reduction of Cement Pastes Exposed to CaCl2 Solutions,” Cement and Concrete Composites, V. 86, 2018, pp. 297-305. doi: 10.1016/j.cemconcomp.2017.11.021

83. ASTM C78/C78M-21, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Third-Point Loading),” ASTM International, West Conshohocken, PA, 2021, 5 pp.

84. Sant, G.; Bentz, D.; and Weiss, J., “Capillary Porosity Depercolation in Cement-Based Materials: Measurement Techniques and Factors Which Influence Their Interpretation,” Cement and Concrete Research, V. 41, No. 8, 2011, pp. 854-864. doi: 10.1016/j.cemconres.2011.04.006

85. Bentz, D. P., and Garboczi, E. J., “A Digitized Simulation Model for Microstructural Development,” Ceramic Transactions, V. 16, 1990, pp. 211-226.

86. Bentz, D. P., and Garboczi, E. J., “Percolation of Phases in a Three-Dimensional Cement Paste Microstructural Model,” Cement and Concrete Research, V. 21, No. 2-3, 1991, pp. 325-344. doi: 10.1016/0008-8846(91)90014-9

87. Trifone, L., “A Study of the Correlation Between Static and Dynamic Modulus of Elasticity on Different Concrete Mixes,” MS thesis, West Virginia University, Morgantown, WV, 2017, 105 pp.

88. Wang, B.; Han, Y.; and Liu, S., “Effect of Highly Dispersed Carbon Nanotubes on the Flexural Toughness of Cement-Based Composites,” Construction and Building Materials, V. 46, 2013, pp. 8-12. doi: 10.1016/j.conbuildmat.2013.04.014

89. Lange, D. A.; Jennings, H. M.; and Shah, S. P., “The Influence of Pore Structure on the Properties of Cement Paste: Initial Observations about Research-In-Progress,” MRS Online Proceedings Library, V. 137, 1988, pp. 47-54.

90. Nguyen, V. P.; Stroeven, M.; and Sluys, L. J., “Multiscale Continuous and Discontinuous Modeling of Heterogeneous Materials: A Review on Recent Developments,” Journal of Multiscale Modelling, V. 03, No. 04, 2011, pp. 229-270. doi: 10.1142/S1756973711000509

91. Rim, J. E.; Zavattieri, P.; Juster, A.; and Espinosa, H. D., “Dimensional Analysis and Parametric Studies For Designing Artificial Nacre,” Journal of the Mechanical Behavior of Biomedical Materials, V. 4, No. 2, 2011, pp. 190-211. doi: 10.1016/j.jmbbm.2010.11.006

92. Espinosa, H. D., and Zavattieri, P. D., “A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part I: Theory and Numerical Implementation,” Mechanics of Materials, V. 35, No. 3-6, 2003, pp. 333-364. doi: 10.1016/S0167-6636(02)00285-5

93. Espinosa, H. D., and Zavattieri, P. D., “A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part II: Numerical Examples,” Mechanics of Materials, V. 35, No. 3-6, 2003, pp. 365-394. doi: 10.1016/S0167-6636(02)00287-9

94. Qudoos, A.; Atta-ur-Rehman; Kim, H. G.; and Ryou, J.-S., “Influence of the Surface Roughness of Crushed Natural Aggregates on the Microhardness of the Interfacial Transition Zone of Concrete With Mineral Admixtures and Polymer Latex,” Construction and Building Materials, V. 168, 2018, pp. 946-957. doi: 10.1016/j.conbuildmat.2018.02.205

95. Xiao, J.; Li, W.; Sun, Z.; Lange, D. A.; and Shah, S. P., “Properties of Interfacial Transition Zones in Recycled Aggregate Concrete Tested by Nanoindentation,” Cement and Concrete Composites, V. 37, 2013, pp. 276-292. doi: 10.1016/j.cemconcomp.2013.01.006

96. Zimbelmann, R., “A Contribution to the Problem of Cement-Aggregate Bond,” Cement and Concrete Research, V. 15, No. 5, 1985, pp. 801-808. doi: 10.1016/0008-8846(85)90146-2

97. Husem, M., “The Effects of Bond Strengths between Lightweight and Ordinary Aggregate-Mortar, Aggregate-Cement Paste on the Mechanical Properties of Concrete,” Materials Science and Engineering: A, V. 363, No. 1-2, 2003, pp. 152-158. doi: 10.1016/S0921-5093(03)00595-1

98. Weiss, J.; Couch, J.; Pease, B.; Laugesen, P.; and Geiker, M., “Influence of Mechanically Induced Cracking on Chloride Ingress in Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 9, 2017, p. 04017128. doi: 10.1061/(ASCE)MT.1943-5533.0001922

99. Chen, X.; Wu, S.; and Zhou, J., “Influence of Porosity on Compressive and Tensile Strength of Cement Mortar,” Construction and Building Materials, V. 40, 2013, pp. 869-874. doi: 10.1016/j.conbuildmat.2012.11.072

100. Zhang, H.; Gan, Y.; Xu, Y.; Zhang, S.; Schlangen, E.; and Šavija, B., “Experimentally Informed Fracture Modelling of Interfacial Transition Zone at Micro-Scale,” Cement and Concrete Composites, V. 104, 2019, Article No. 103383. doi: 10.1016/j.cemconcomp.2019.103383

101. Konsta-Gdoutos, M. S.; Batis, G.; Danoglidis, P. A.; Zacharopoulou, A. K.; Zacharopoulou, E. K.; Falara, M. G.; and Shah, S. P., “Effect of CNT and CNF Loading and Count on the Corrosion Resistance, Conductivity and Mechanical Properties of Nanomodified OPC Mortars,” Construction and Building Materials, V. 147, 2017, pp. 48-57. doi: 10.1016/j.conbuildmat.2017.04.112

102. Al-Rifaie, W. N.; Mahdi, O. M.; and Ahmed, W. K., “Development of Nanocement Mortar as a Construction Material,” Advanced Materials Research, V. 795, 2013, pp. 684-691. doi: 10.4028/www.scientific.net/AMR.795.684

103. Kumar, R., and Bhattacharjee, B., “Porosity, Pore Size Distribution and In Situ Strength of Concrete,” Cement and Concrete Research, V. 33, No. 1, 2003, pp. 155-164. doi: 10.1016/S0008-8846(02)00942-0

104. Mondal, P.; Shah, S. P; and Marks, L. D., “Nanomechanical Properties of Interfacial Transition Zone in Concrete,” Nanotechnology in Construction 3: Proceedings of the NICOM3, Z. Bittnar, P. J. M. Bartos, J. Němeček, V. Šmilauer, and J. Zeman, eds., Springer, Berlin, Germany, 2009, pp. 315-320. doi: 10.1007/978-3-642-00980-8_42

105. Jebli, M.; Jamin, F.; Malachanne, E.; Garcia-Diaz, E.; and El Youssoufi, M. S., “Experimental Characterization of Mechanical Properties of the Cement-Aggregate Interface in Concrete,” Construction and Building Materials, V. 161, 2018, pp. 16-25. doi: 10.1016/j.conbuildmat.2017.11.100

106. Esmaeeli, H. S.; Shishehbor, M.; Weiss, W. J.; and Zavattieri, P. D., “A Two-Step Multiscale Model to Predict Early Age Strength Development of Cementitious Composites Considering Competing Fracture Mechanisms,” Construction and Building Materials, V. 208, 2019, pp. 577-600. doi: 10.1016/j.conbuildmat.2019.02.134

107. Santos, A. R.; do Rosário Veiga, M.; Silva, A. S.; and de Brito, J., “Microstructure as a Critical Factor of Cement Mortars’ Behaviour: The Effect of Aggregates’ Properties,” Cement and Concrete Composites, V. 111, 2020, Article No. 103628. doi: 10.1016/j.cemconcomp.2020.103628




  

Edit Module Settings to define Page Content Reviewer