Effect of High-Range Water-Reducing Admixtures on Alkali- Activated Slag Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Effect of High-Range Water-Reducing Admixtures on Alkali- Activated Slag Concrete

Author(s): Yubo Sun, Yaxin Tao, A. V. Rahul, Guang Ye, and Geert De Schutter

Publication: Materials Journal

Volume: 119

Issue: 6

Appears on pages(s): 233-245

Keywords: alkali-activated slag (AAS) concrete; high-range water-reducing admixture (HRWRA); reaction kinetics; rheology; strength development

DOI: 10.14359/51737192

Date: 11/1/2022

Abstract:
The rapid workability loss of alkali-activated materials (AAMs) has been a major obstacle limiting their on-site application. In this study, two conventional high-range water-reducing admixtures (HRWRAs) (made of polynaphthalene sulfonate [PNS] and lignosulfonate [LS] salts), which have been reported to be effective in some specific AAM mixtures, were separately applied in alkali-activated slag (AAS) concretes. A comprehensive testing program was performed to study their effect on reaction kinetics, rheology evolution, and strength development. Results showed that sodium silicate-activated AAS mixtures exhibited lower yield stress than those activated by sodium hydroxide. In hydroxide media, PNS and LS remained effective in reducing yield stress and increasing slump value, while they both failed to improve the rheological behavior of AAS activated by silicate. Moreover, the inclusion of 2% admixtures did not result in much strength reduction in either activator, although LS showed a retardation effect and subsequent increase in the setting time in the fresh state.

Related References:

1. Damtoft, J. S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; and Gartner, E. M., “Sustainable Development and Climate Change Initiatives,” Cement and Concrete Research, V. 38, No. 2, Feb. 2008, pp. 115-127. doi: 10.1016/j.cemconres.2007.09.008

2. Provis, J. L., and van Deventer, J. S. J., eds., Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer, Dordrecht, the Netherlands, 2013.

3. Mishra, J.; Das, S. K.; Krishna, R. S.; Nanda, B.; Patro, S. K.; and Mustakim, S. M., “Synthesis and Characterization of a New Class of Geopolymer Binder Utilizing Ferrochrome Ash (FCA) for Sustainable Industrial Waste Management,” Materials Today: Proceedings, V. 33, Part 8, 2020, pp. 5001-5006. doi: 10.1016/j.matpr.2020.02.832

4. Longos, A. Jr.; Tigue, A. A.; Dollente, I. J.; Malenab, R. A.; Bernardo-Arugay, I.; Hinode, H.; Kurniawan, W.; and Promentilla, M. A., “Optimization of the Mix Formulation of Geopolymer Using Nickel-Laterite Mine Waste and Coal Fly Ash,” Minerals (Basel), V. 10, No. 12, Dec. 2020, Article No. 1144. doi: 10.3390/min10121144

5. Thakur, A. K.; Pappu, A.; and Thakur, V. K., “Synthesis and Characterization of New Class of Geopolymer Hybrid Composite Materials from Industrial Wastes,” Journal of Cleaner Production, V. 230, Sept. 2019, pp. 11-20. doi: 10.1016/j.jclepro.2019.05.081

6. Rentier, G.; Lelieveldt, H.; and Kramer, G. J., “Varieties of Coal-Fired Power Phase-Out across Europe,” Energy Policy, V. 132, Sept. 2019, pp. 620-632. doi: 10.1016/j.enpol.2019.05.042

7. Vogl, V.; Åhman, M.; and Nilsson, L. J., “The Making of Green Steel in the EU: A Policy Evaluation for the Early Commercialization Phase,” Climate Policy, V. 21, No. 1, 2021, pp. 78-92. doi: 10.1080/14693062.2020.1803040

8. Fawer, M.; Concannon, M.; and Rieber, W., “Life Cycle Inventories for the Production of Sodium Silicates,” The International Journal of Life Cycle Assessment, V. 4, No. 4, July 1999, pp. 207-212. doi: 10.1007/BF02979498

9. Turner, L. K., and Collins, F. G., “Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete,” Construction and Building Materials, V. 43, June 2013, pp. 125-130. doi: 10.1016/j.conbuildmat.2013.01.023

10. Qing-Hua, C., and Sarkar, S. L., “A Study of Rheological and Mechanical Properties of Mixed Alkali Activated Slag Pastes,” Advanced Cement Based Materials, V. 1, No. 4, May 1994, pp. 178-184. doi: 10.1016/1065-7355(94)90009-4

11. Chang, J. J., “A Study on the Setting Characteristics of Sodium Silicate-Activated Slag Pastes,” Cement and Concrete Research, V. 33, No. 7, July 2003, pp. 1005-1011. doi: 10.1016/S0008-8846(02)01096-7

12. Lu, C.; Zhang, Z.; Shi, C.; Li, N.; Jiao, D.; and Yuan, Q., “Rheology of Alkali-Activated Materials: A Review,” Cement and Concrete Composites, V. 121, Aug. 2021, Article No. 104061. doi: 10.1016/j.cemconcomp.2021.104061

13. Palacios, M.; Gismera, S.; Alonso, M. M.; d’Espinose de Lacaillerie, J. B.; Lothenbach, B.; Favier, A.; Brumaud, C.; and Puertas, F., “Early Reactivity of Sodium Silicate-Activated Slag Pastes and Its Impact on Rheological Properties,” Cement and Concrete Research, V. 140, Feb. 2021, Article No. 106302.

14. Deir, E.; Gebregziabiher, B. S.; and Peethamparan, S., “Influence of Starting Material on the Early Age Hydration Kinetics, Microstructure and Composition of Binding Gel in Alkali Activated Binder Systems,” Cement and Concrete Composites, V. 48, Apr. 2014, pp. 108-117. doi: 10.1016/j.cemconcomp.2013.11.010

15. Song, S., and Jennings, H. M., “Pore Solution Chemistry of Alkali-Activated Ground Granulated Blast-Furnace Slag,” Cement and Concrete Research, V. 29, No. 2, Feb. 1999, pp. 159-170. doi: 10.1016/S0008-8846(98)00212-9

16. Gebregziabiher, B. S.; Thomas, R.; and Peethamparan, S., “Very Early-Age Reaction Kinetics and Microstructural Development in Alkali-Activated Slag,” Cement and Concrete Composites, V. 55, Jan. 2015, pp. 91-102. doi: 10.1016/j.cemconcomp.2014.09.001

17. Yang, X.; Zhu, W.; and Yang, Q., “The Viscosity Properties of Sodium Silicate Solutions,” Journal of Solution Chemistry, V. 37, No. 1, Jan. 2008, pp. 73-83. doi: 10.1007/s10953-007-9214-6

18. Provis, J. L., and Bernal, S. A., “Geopolymers and Related Alkali-Activated Materials,” Annual Review of Materials Research, V. 44, 2014, pp. 299-327. doi: 10.1146/annurev-matsci-070813-113515

19. Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; and Macphee, D. E., “Compatibility Studies between N-A-S-H and C-A-S-H Gels. Study in the Ternary Diagram Na2O–CaO–Al2O3–SiO2–H2O,” Cement and Concrete Research, V. 41, No. 9, Sept. 2011, pp. 923-931. doi: 10.1016/j.cemconres.2011.05.006

20. Fernández-Jiménez, A., and Puertas, F., “Effect of Activator Mix on the Hydration and Strength Behaviour of Alkali-Activated Slag Cements,” Advances in Cement Research, V. 15, No. 3, July 2003, pp. 129-136. doi: 10.1680/adcr.2003.15.3.129

21. Aydın, S., and Baradan, B., “Effect of Activator Type and Content on Properties of Alkali-Activated Slag Mortars,” Composites Part B: Engineering, V. 57, Feb. 2014, pp. 166-172. doi: 10.1016/j.compositesb.2013.10.001

22. Puertas, F.; Varga, C.; and Alonso, M. M., “Rheology of Alkali-Activated Slag Pastes. Effect of the Nature and Concentration of the Activating Solution,” Cement and Concrete Composites, V. 53, Oct. 2014, pp. 279-288. doi: 10.1016/j.cemconcomp.2014.07.012

23. Puertas, F.; Fernández-Jiménez, A.; and Blanco-Varela, M. T., “Pore Solution in Alkali-Activated Slag Cement Pastes. Relation to the Composition and Structure of Calcium Silicate Hydrate,” Cement and Concrete Research, V. 34, No. 1, Jan. 2004, pp. 139-148. doi: 10.1016/S0008-8846(03)00254-0

24. Fernández-Jiménez, A., and Puertas, F., “Setting of Alkali-Activated Slag Cement. Influence of Activator Nature,” Advances in Cement Research, V. 13, No. 3, July 2001, pp. 115-121. doi: 10.1680/adcr.2001.13.3.115

25. Palacios, M.; Banfill, P. F. G.; and Puertas, F., “Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture,” ACI Materials Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 140-148.

26. Ramachandran, V. S., Concrete Admixtures Handbook: Properties, Science, and Technology, Noyes Publications, Park Ridge, NJ, 1984.

27. Yoshioka, K.; Tazawa, E.-I.; Kawai, K.; and Enohata, T., “Adsorption Characteristics of Superplasticizers on Cement Component Minerals,” Cement and Concrete Research, V. 32, No. 10, Oct. 2002, pp. 1507-1513. doi: 10.1016/S0008-8846(02)00782-2

28. Nematollahi, B., and Sanjayan, J., “Effect of Different Superplasticizers and Activator Combinations on Workability and Strength of Fly Ash Based Geopolymer,” Materials & Design, V. 57, May 2014, pp. 667-672. doi: 10.1016/j.matdes.2014.01.064

29. Oderji, S. Y.; Chen, B.; Shakya, C.; Ahmad, M. R.; and Shah, S. F. A., “Influence of Superplasticizers and Retarders on the Workability and Strength of One-Part Alkali-Activated Fly Ash/Slag Binders Cured at Room Temperature,” Construction and Building Materials, V. 229, Dec. 2019, Article No. 116891. doi: 10.1016/j.conbuildmat.2019.116891

30. Laskar, A. I., and Bhattacharjee, R., “Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash-Based Geopolymer Concrete,” ACI Materials Journal, V. 110, No. 5, Sept.-Oct. 2013, pp. 513-518.

31. Hardjito, D.; Wallah, S. E.; Sumajouw, D. M. J.; and Rangan, B. V., “On the Development of Fly Ash-Based Geopolymer Concrete,” ACI Materials Journal, V. 101, No. 6, Nov.-Dec. 2004, pp. 467-472.

32. Aliabdo, A. A.; Abd Elmoaty, A. E. M.; and Salem, H. A., “Effect of Water Addition, Plasticizer and Alkaline Solution Constitution on Fly Ash Based Geopolymer Concrete Performance,” Construction and Building Materials, V. 121, Sept. 2016, pp. 694-703. doi: 10.1016/j.conbuildmat.2016.06.062

33. Palacios, M.; Houst, Y. F.; Bowen, P.; and Puertas, F., “Adsorption of Superplasticizer Admixtures on Alkali-Activated Slag Pastes,” Cement and Concrete Research, V. 39, No. 8, Aug. 2009, pp. 670-677. doi: 10.1016/j.cemconres.2009.05.005

34. Tong, S.; Yuqi, Z.; and Qiang, W., “Recent Advances in Chemical Admixtures for Improving the Workability of Alkali-Activated Slag-Based Material Systems,” Construction and Building Materials, V. 272, Feb. 2021, Article No. 121647. doi: 10.1016/j.conbuildmat.2020.121647

35. Palacios, M., and Puertas, F., “Effect of Superplasticizer and Shrinkage-Reducing Admixtures on Alkali-Activated Slag Pastes and Mortars,” Cement and Concrete Research, V. 35, No. 7, July 2005, pp. 1358-1367. doi: 10.1016/j.cemconres.2004.10.014

36. Luukkonen, T.; Abdollahnejad, Z.; Ohenoja, K.; Kinnunen, P.; and Illikainen, M., “Suitability of Commercial Superplasticizers for One-Part Alkali-Activated Blast-Furnace Slag Mortar,” Journal of Sustainable Cement-Based Materials, V. 8, No. 4, 2019, pp. 244-257. doi: 10.1080/21650373.2019.1625827

37. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y.-B., “Effect of Admixtures on Properties of Alkali-Activated Slag Concrete,” Cement and Concrete Research, V. 30, No. 9, Sept. 2000, pp. 1367-1374. doi: 10.1016/S0008-8846(00)00349-5

38. Kong, D. L. Y., and Sanjayan, J. G., “Effect of Elevated Temperatures on Geopolymer Paste, Mortar and Concrete,” Cement and Concrete Research, V. 40, No. 2, Feb. 2010, pp. 334-339. doi: 10.1016/j.cemconres.2009.10.017

39. Triwulan, T.; Wigestika, P.; and Ekaputri, J. J., “Addition of Superplasticizer on Geopolymer Concrete,” ARPN Journal of Engineering and Applied Sciences, V. 11, No. 24, Dec. 2016, pp. 14456-14462.

40. Criado, M.; Palomo, A.; Fernández-Jiménez, A.; and Banfill, P. F. G., “Alkali Activated Fly Ash: Effect of Admixtures on Paste Rheology,” Rheologica Acta, V. 48, No. 4, May 2009, pp. 447-455. doi: 10.1007/s00397-008-0345-5

41. Laskar, S. M., and Talukdar, S., “Effect of Addition of Fly Ash and Superplasticizer on Ultra-fine Slag Based Geopolymer Mortar,” Recent Advances in Structural Engineering, Volume 1: Select Proceedings of SEC 2016, A. Rama Mohan Rao and K. Ramanjaneyulu, eds., Springer, Singapore, 2019, pp. 693-702.

42. Weng, C.-H., and Huang, C. P. “Adsorption Characteristics of Zn(II) from Dilute Aqueous Solution by Fly Ash,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 247, No. 1-3, Oct. 2004, pp. 137-143.

43. Luukkonen, T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; and Lassi, U., “Metakaolin Geopolymer Characterization and Application for Ammonium Removal from Model Solutions and Landfill Leachate,” Applied Clay Science, V. 119, Part 2, Jan. 2016, pp. 266-276. doi: 10.1016/j.clay.2015.10.027

44. Marchon, D.; Sulser, U.; Eberhardt, A.; and Flatt, R. J., “Molecular Design of Comb-Shaped Polycarboxylate Dispersants for Environmentally Friendly Concrete,” Soft Matter, V. 9, No. 45, Dec. 2013, pp. 10719-10728.

45. RILEM Technical Committee 247-DTA, “RILEM TC 247-DTA Round Robin Test: Mix Design and Reproducibility of Compressive Strength of Alkali-Activated Concretes,” Materials and Structures, V. 52, No. 5, Oct. 2019, Article No. 99, 13 pp.

46. Kalina, L.; Bílek, V. Jr.; Hrubý, P.; Iliushchenko, V.; Kalina, M.; and Smilek, J., “On the Action Mechanism of Lignosulfonate Plasticizer in Alkali-Activated Slag-Based System,” Cement and Concrete Research, V. 157, July 2022, Article No. 106822.

47. Puertas, F.; González-Fonteboa, B.; González-Taboada, I.; Alonso, M. M.; Torres-Carrasco, M.; Rojo, G.; and Martínez-Abella, F., “Alkali-Activated Slag Concrete: Fresh and Hardened Behaviour,” Cement and Concrete Composites, V. 85, Jan. 2018, pp. 22-31. doi: 10.1016/j.cemconcomp.2017.10.003

48. Favier, A.; Habert, G.; d’Espinose De Lacaillerie, J. B.; and Roussel, N., “Mechanical Properties and Compositional Heterogeneities of Fresh Geopolymer Pastes,” Cement and Concrete Research, V. 48, June 2013, pp. 9-16. doi: 10.1016/j.cemconres.2013.02.001

49. Alnahhal, M. F.; Kim, T.; and Hajimohammadi, A., “Distinctive Rheological and Temporal Viscoelastic Behaviour of Alkali-Activated Fly Ash/Slag Pastes: A Comparative Study with Cement Paste,” Cement and Concrete Research, V. 144, June 2021, Article No. 106441.

50. Koehler, E. P., and Fowler, D. W., “Development of a Portable Rheometer for Fresh Portland Cement Concrete,” Research Report No. ICAR-105-3F, International Center for Aggregates Research, The University of Texas at Austin, Austin, TX, 2004, 328 pp.

51. Scrivener, K. L., and Nonat, A., “Hydration of Cementitious Materials, Present and Future,” Cement and Concrete Research, V. 41, No. 7, July 2011, pp. 651-665. doi: 10.1016/j.cemconres.2011.03.026

52. Ravikumar, D., and Neithalath, N., “Reaction Kinetics in Sodium Silicate Powder and Liquid Activated Slag Binders Evaluated Using Isothermal Calorimetry,” Thermochimica Acta, V. 546, Oct. 2012, pp. 32-43. doi: 10.1016/j.tca.2012.07.010

53. Kashani, A.; Provis, J. L.; Qiao, G. G.; and van Deventer, J. S. J., “The Interrelationship between Surface Chemistry and Rheology in Alkali Activated Slag Paste,” Construction and Building Materials, V. 65, Aug. 2014, pp. 583-591. doi: 10.1016/j.conbuildmat.2014.04.127

54. Gebregziabiher, B. S.; Thomas, R. J.; and Peethamparan, S., “Temperature and Activator Effect on Early-Age Reaction Kinetics of Alkali-Activated Slag Binders,” Construction and Building Materials, V. 113, June 2016, pp. 783-793. doi: 10.1016/j.conbuildmat.2016.03.098

55. Zuo, Y., and Ye, G., “Preliminary Interpretation of the Induction Period in Hydration of Sodium Hydroxide/Silicate Activated Slag,” Materials (Basel), V. 13, No. 21, Nov. 2020, Article No. 4796, 19 pp. doi: 10.3390/ma13214796

56. Duxson, P., and Provis, J. L., “Designing Precursors for Geopolymer Cements,” Journal of the American Ceramic Society, V. 91, No. 12, Dec. 2008, pp. 3864-3869. doi: 10.1111/j.1551-2916.2008.02787.x

57. Cao, R.; Zhang, S.; Banthia, N.; Zhang, Y.; and Zhang, Z., “Interpreting the Early-Age Reaction Process of Alkali-Activated Slag by Using Combined Embedded Ultrasonic Measurement, Thermal Analysis, XRD, FTIR and SEM,” Composites Part B: Engineering, V. 186, Apr. 2020, Article No. 107840. doi: 10.1016/j.compositesb.2020.107840

58. Dimas, D.; Giannopoulou, I.; and Panias, D., “Polymerization in Sodium Silicate Solutions: A Fundamental Process in Geopolymerization Technology,” Journal of Materials Science, V. 44, No. 14, July 2009, pp. 3719-3730. doi: 10.1007/s10853-009-3497-5

59. Altan, E., and Erdoǧan, S. T., “Alkali Activation of a Slag at Ambient and Elevated Temperatures,” Cement and Concrete Composites, V. 34, No. 2, Feb. 2012, pp. 131-139. doi: 10.1016/j.cemconcomp.2011.08.003

60. Bensted, J., “Some Applications of Conduction Calorimetry to Cement Hydration,” Advances in Cement Research, V. 1, No. 1, Oct. 1987, pp. 35-44. doi: 10.1680/adcr.1987.1.1.35

61. Bentz, D. P.; Peltz, M. A.; and Winpigler, J., “Early-Age Properties of Cement-Based Materials. II: Influence of Water-to-Cement Ratio,” Journal of Materials in Civil Engineering, ASCE, V. 21, No. 9, Sept. 2010, pp. 512-517.

62. Trtnik, G.; Turk, G.; Kavčič, F.; and Bosiljkov, V. B., “Possibilities of Using the Ultrasonic Wave Transmission Method to Estimate Initial Setting Time of Cement Paste,” Cement and Concrete Research, V. 38, No. 11, Nov. 2008, pp. 1336-1342. doi: 10.1016/j.cemconres.2008.08.003

63. Taylor, H. F. W., Cement Chemistry, second edition, Thomas Telford Publishing, London, UK, 1997.

64. Chen, X.; Meawad, A.; and Struble, L. J., “Method to Stop Geopolymer Reaction,” Journal of the American Ceramic Society, V. 97, No. 10, Oct. 2014, pp. 3270-3275.

65. Mahmoodzadeh, F., and Chidiac, S. E., “Rheological Models for Predicting Plastic Viscosity and Yield Stress of Fresh Concrete,” Cement and Concrete Research, V. 49, July 2013, pp. 1-9. doi: 10.1016/j.cemconres.2013.03.004

66. Alonso, M. M.; Gismera, S.; Blanco, M. T.; Lanzón, M.; and Puertas, F., “Alkali-Activated Mortars: Workability and Rheological Behaviour,” Construction and Building Materials, V. 145, Aug. 2017, pp. 576-587. doi: 10.1016/j.conbuildmat.2017.04.020

67. Roussel, N., “Steady and Transient Flow Behaviour of Fresh Cement Pastes,” Cement and Concrete Research, V. 35, No. 9, Sept. 2005, pp. 1656-1664. doi: 10.1016/j.cemconres.2004.08.001

68. Billberg, P. “Form Pressure Generated by Self-Compacting Concrete — Influence of Thixotropy and Structural Behaviour at Rest,” PhD thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2006, 105 pp.

69. Provis, J. L., and van Deventer, J. S. J., “Geopolymerisation Kinetics. 2. Reaction Kinetic Modelling,” Chemical Engineering Science, V. 62, No. 9, May 2007, pp. 2318-2329. doi: 10.1016/j.ces.2007.01.028

70. Weng, L.; Sagoe-Crentsil, K.; Brown, T.; and Song, S., “Effects of Aluminates on the Formation of Geopolymers,” Materials Science and Engineering: B, V. 117, No. 2, Mar. 2005, pp. 163-168. doi: 10.1016/j.mseb.2004.11.008

71. Tregger, N. A.; Pakula, M. E.; and Shah, S. P., “Influence of Clays on the Rheology of Cement Pastes,” Cement and Concrete Research, V. 40, No. 3, Mar. 2010, pp. 384-391.

72. Yang, T.; Zhu, H.; Zhang, Z.; Gao, X.; Zhang, C.; and Wu, Q., “Effect of Fly Ash Microsphere on the Rheology and Microstructure of Alkali-Activated Fly Ash/Slag Pastes,” Cement and Concrete Research, V. 109, July 2018, pp. 198-207. doi: 10.1016/j.cemconres.2018.04.008

73. Arel, H. Ş., and Aydin, E., “Effects of Ca-, Mg-, K-, and Na-Lignosulfonates on the Behavior of Fresh Concrete,” Construction and Building Materials, V. 157, Dec. 2017, pp. 1084-1091.

74. Zhang, R.; Xiao, X.; Tai, Q.; Huang, H.; and Hu, Y., “Modification of Lignin and Its Application as Char Agent in Intumescent Flame-Retardant Poly(lactic acid),” Polymer Engineering & Science, V. 52, No. 12, Dec. 2012, pp. 2620-2626.

75. Puertas, F.; González-Fonteboa, B.; González-Taboada, I.; Alonso, M. M.; Torres-Carrasco, M.; Rojo, G.; and Martínez-Abella, F., “Alkali-Activated Slag Concrete: Fresh and Hardened Behaviour,” Cement and Concrete Composites, V. 85, Jan. 2018, pp. 22-31. doi: 10.1016/j.cemconcomp.2017.10.003

76. Assaad, J.; Khayat, K. H.; and Mesbah, H., “Assessment of Thixotropy of Flowable and Self-Consolidating Concrete,” ACI Materials Journal, V. 100, No. 2, Mar.-Apr. 2003, pp. 99-107.

77. He, Y.; Zhang, X.; Shui, L.; Wang, Y.; Gu, M.; Wang, X.; Wang, H.; and Peng, L., “Effects of PCEs with Various Carboxylic Densities and Functional Groups on the Fluidity and Hydration Performances of Cement Paste,” Construction and Building Materials, V. 202, Mar. 2019, pp. 656-668. doi: 10.1016/j.conbuildmat.2018.12.216

78. Lange, A., and Plank, J., “Contribution of Non-Adsorbing Polymers to Cement Dispersion,” Cement and Concrete Research, V. 79, Jan. 2016, pp. 131-136. doi: 10.1016/j.cemconres.2015.09.003

79. Favier, A.; Hot, J.; Habert, G.; Roussel, N.; and d’Espinose de Lacaillerie, J.-B., “Flow Properties of MK-Based Geopolymer Pastes. A Comparative Study with Standard Portland Cement Pastes,” Soft Matter, V. 10, No. 8, Feb. 2014, pp. 1134-1141. doi: 10.1039/c3sm51889b

80. Sun, Y.; Zhang, S.; Rahul, A. V.; Tao, Y.; Van Bockstaele, F.; Dewettinck, K.; Ye, G.; and De Schutter, G., “Rheology of Alkali-Activated Slag Pastes: New Insight from Microstructural Investigations by Cryo-SEM,” Cement and Concrete Research, V. 157, July 2022, Article No. 106806. doi: 10.1016/j.cemconres.2022.106806

81. Diamant, H., and Andelman, D., “Kinetics of Surfactant Adsorption at Fluid–Fluid interfaces,” The Journal of Physical Chemistry, V. 100, No. 32, Aug. 1996, pp. 13732-13742. doi: 10.1021/jp960377k

82. Scamehorn, J. F., ed., Phenomena in Mixed Surfactant Systems, ACS Symposium Series No. 311, American Chemical Society, Washington, DC, 1986, 349 pp.

83. Pérez-Nicolás, M.; Duran, A.; Navarro-Blasco, I.; Fernández, J. M.; Sirera, R.; and Alvarez, J. I., “Study on the Effectiveness of PNS and LS Superplasticizers in Air Lime-Based Mortars,” Cement and Concrete Research, V. 82, Apr. 2016, pp. 11-22. doi: 10.1016/j.cemconres.2015.12.006

84. July, R. “T A B L E 1 Chemical and Mineralogical Composition, and Fineness of Cement and Blending,” V. 22, 1992, pp. 1115-1129.

85. Nagrockiene, D.; Pundiene, I.; and Kicaite, A., “The Effect of Cement Type and Plasticizer Addition on Concrete Properties,” Construction and Building Materials, V. 45, Aug. 2013, pp. 324-331.

86. Topçu, İ. B., and Ateşin, Ö., “Effect of High Dosage Lignosulphonate and Naphthalene Sulphonate Based Plasticizer Usage on Micro Concrete Properties,” Construction and Building Materials, V. 120, Sept. 2016, pp. 189-197.

87. Wang, S.-D., and Scrivener, K. L., “Hydration Products of Alkali Activated Slag Cement,” Cement and Concrete Research, V. 25, No. 3, Apr. 1995, pp. 561-571. doi: 10.1016/0008-8846(95)00045-E

88. Schade, T.; Bellmann, F.; and Middendorf, B., “Quantitative Analysis of C-(K)-A-S-H-Amount and Hydrotalcite Phase Content in Finely Ground Highly Alkali-Activated Slag/Silica Fume Blended Cementitious Material,” Cement and Concrete Research, V. 153, Mar. 2022, Article No. 106706. doi: 10.1016/j.cemconres.2021.106706

89. Ben Haha, M.; Le Saout, G.; Winnefeld, F.; and Lothenbach, B., “Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-Furnace Slags,” Cement and Concrete Research, V. 41, No. 3, Mar. 2011, pp. 301-310. doi: 10.1016/j.cemconres.2010.11.016

90. Zuo, Y., and Ye, G., “Pore Structure Characterization of Sodium Hydroxide Activated Slag Using Mercury Intrusion Porosimetry, Nitrogen Adsorption, and Image Analysis,” Materials (Basel), V. 11, No. 6, June 2018, Article No. 1035.

91. Hubler, M. H.; Thomas, J. J.; and Jennings, H. M., “Influence of Nucleation Seeding on the Hydration Kinetics and Compressive Strength of Alkali Activated Slag Paste,” Cement and Concrete Research, V. 41, No. 8, Aug. 2011, pp. 842-846. doi: 10.1016/j.cemconres.2011.04.002


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer