Title:
Tensile Response of Reinforced Ultra-High-Performance Fiber-Reinforced Cementitious Composites: Modeling and Design Recommendations
Author(s):
Rui Valente and Mário Pimentel
Publication:
Structural Journal
Volume:
120
Issue:
1
Appears on pages(s):
149-161
Keywords:
combined reinforcement; mechanical model; tensile behavior; tension chord model (TCM); ultra-high-performance fiber-reinforced cementitious composite (UHPFRC)
DOI:
10.14359/51736122
Date:
1/1/2023
Abstract:
The combination of ultra-high-performance fiber-reinforced
cementitious composites (UHPFRCs) with reinforcing steel bars
(R-UHPFRC) allows for structural solutions complying with severe durability and mechanical demands. However, models capable of describing the complete full tensile behavior of R-UHPFRC based on the mechanics of the involved phenomena and that can form the basis of design recommendations are still lacking. The purpose of this work is the development of a theoretical model for the uniaxial tensile response of R-UHPFRC, capable of describing both the pre- and post-yielding stage of the reinforcement. The tensile R-UHPFRC element is divided into a series of parallel crack elements with variable post-cracking strength. The solution of the bond problem resorts to the Tension Chord Model and accounts for the contribution of fibers at the cracks. Sensitivity studies are
performed to assess the influence of the governing parameters.
The calculated force-deformation responses and crack spacing
are compared to existing experimental evidence. The model is then used as a basis for the proposal of design recommendations.
Related References:
1. Richard, P., and Cheyrezy, M., “Composition of Reactive Powder Concretes,” Cement and Concrete Research, V. 25, No. 7, 1995, pp. 1501-1511. doi: 10.1016/0008-8846(95)00144-2
2. Rossi, P., “High Performance Multimodal Fiber Reinforced Cement Composites (HPMFRCC): The LCPC Experience,” ACI Materials Journal, V. 94, No. 6, Nov.-Dec. 1997, pp. 478-783.
3. Wille, K.; Naaman, A. E.; and Parra-Montesinos, G. J., “Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way,” ACI Materials Journal, V. 108, No. 1, Jan.-Feb. 2011, pp. 46-54.
4. Naaman, A. E., and Wille, K., “The Path to Ultra-High Performance Fiber Reinforced Concrete (UHP-FRC): Five Decades of Progress,” Proceedings of Hipermat, 2012, pp. 3-15.
5. Haber, Z. B.; De la Varga, I.; Graybeal, B. A.; Nakashoji, B.; and El-Helou, R., “Properties and Behavior of UHPC-Class Materials (FHWA-HRT-18-036),” U.S. Department of Transportation, Federal Highway Administration, McLean, VA, 2018, pp. 1-153.
6. Graybeal, B.; Brühwiler, E.; Kim, B.-S.; Toutlemonde, F.; Voo, Y. L.; and Zaghi, A., “International Perspective on UHPC in Bridge Engineering,” Journal of Bridge Engineering, ASCE, V. 25, No. 11, 2020, p. 04020094. doi: 10.1061/(ASCE)BE.1943-5592.0001630
7. Hung, C.-C.; El-Tawil, S.; and Chao, S.-H., “A Review of Developments and Challenges for UHPC in Structural Engineering: Behavior, Analysis, and Design,” Journal of Structural Engineering, ASCE, V. 147, No. 9, 2021, p. 03121001. doi: 10.1061/(ASCE)ST.1943-541X.0003073
8. Wille, K., and Naaman, A. E., “Effect of Ultra-High-Performance Concrete on Pullout Behavior of High-Strength Brass-Coated Straight Steel Fibers,” ACI Materials Journal, V. 110, No. 4, July-Aug. 2013, pp. 451-461.
9. Meng, W., and Khayat, K. H., “Mechanical Properties of Ultra-High-Performance Concrete Enhanced with Graphite Nanoplatelets and Carbon Nanofibers,” Composites. Part B, Engineering, V. 107, Dec. 2016, pp. 113-122. doi: 10.1016/j.compositesb.2016.09.069
10. Yoo, D.-Y.; Park, J.-J.; and Kim, S.-W., “Fiber Pullout Behavior of HPFRCC: Effects of Matrix Strength and Fiber Type,” Composite Structures, V. 174, Aug. 2017, pp. 263-276. doi: 10.1016/j.compstruct.2017.04.064
11. Wille, K.; El-Tawil, S.; and Naaman, A. E., “Properties of Strain Hardening Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) under Direct Tensile Loading,” Cement and Concrete Composites, V. 48, Apr. 2014, pp. 53-66. doi: 10.1016/j.cemconcomp.2013.12.015
12. Kim, J.-J., and Yoo, D.-Y., “Effects of Fiber Shape and Distance on the Pullout Behavior of Steel Fibers Embedded in Ultra-High-Performance Concrete,” Cement and Concrete Composites, V. 103, Oct. 2019, pp. 213-223. doi: 10.1016/j.cemconcomp.2019.05.006
13. Yoo, D.-Y.; Kim, S.; Park, G.-J.; Park, J.-J.; and Kim, S.-W., “Effects of Fiber Shape, Aspect Ratio, and Volume Fraction on Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Cement Composites,” Composite Structures, V. 174, Aug. 2017, pp. 375-388. doi: 10.1016/j.compstruct.2017.04.069
14. Abrishambaf, A.; Pimentel, M.; and Nunes, S., “Influence of Fibre Orientation on the Tensile Behaviour of Ultra-High Performance Fibre Reinforced Cementitious Composites,” Cement and Concrete Research, V. 97, July 2017, pp. 28-40. doi: 10.1016/j.cemconres.2017.03.007
15. Duque, L. F. M., and Graybeal, B., “Fiber Orientation Distribution and Tensile Mechanical Response in UHPFRC,” Materials and Structures, V. 50, No. 1, 2017, pp. 1-17.
16. Ferrara, L.; Ozyurt, N.; and Di Prisco, M., “High Mechanical Performance of Fibre Reinforced Cementitious Composites: The Role of ‘Casting-Flow Induced’ Fibre Orientation,” Materials and Structures, V. 44, No. 1, 2011, pp. 109-128. doi: 10.1617/s11527-010-9613-9
17. Naaman, A., and Reinhardt, H., “High Performance Fiber Reinforced Cement Composites (HPFRCC4),” Proceedings, 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites-HPFRCC, 2003.
18. Abrishambaf, A.; Pimentel, M.; and Nunes, S., “A Meso-Mechanical Model to Simulate the Tensile Behaviour of Ultra-High Performance Fibre-Reinforced Cementitious Composites,” Composite Structures, V. 222, Aug. 2019, p. 110911. doi: 10.1016/j.compstruct.2019.110911
19. Pfyl, T., “Tragverhalten von stahlfaserbeton,” Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland, 2003.
20. Markić, T.; Amin, A.; Kaufmann, W.; and Pfyl, T., “Strength and Deformation Capacity of Tension and Flexural RC Members Containing Steel Fibers,” Journal of Structural Engineering, ASCE, V. 146, No. 5, 2020, p. 04020069. doi: 10.1061/(ASCE)ST.1943-541X.0002614
21. Amin, A.; Foster, S. J.; and Watts, M., “Modelling the Tension Stiffening Effect in SFR-RC,” Magazine of Concrete Research, V. 68, No. 7, 2016, pp. 339-352. doi: 10.1680/macr.15.00188
22. Lee, S.-C.; Cho, J.-Y.; and Vecchio, F. J., “Tension-Stiffening Model for Steel Fiber-Reinforced Concrete Containing Conventional Reinforcement,” ACI Structural Journal, V. 110, No. 4, July-Aug. 2013, pp. 639-648.
23. Bernardi, P.; Michelini, E.; Minelli, F.; and Tiberti, G., “Experimental and Numerical Study on Cracking Process in RC and R/FRC Ties,” Materials and Structures, V. 49, No. 1-2, 2016, pp. 261-277. doi: 10.1617/s11527-014-0494-1
24. Oesterlee, C., “Structural Response of Reinforced UHPFRC and RC Composite Members,” doctoral thesis, School of Architecture, Civil and Environmental, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2010.
25. Redaelli, D., “Comportement et modélisation des éléments de structure en béton fibré à ultra-hautes performances avec armatures passives,” doctoral thesis, School of Architecture, Civil and Environmental, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2009.
26. Leutbecher, T., “Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem ultrahochfesten Beton (UHPC),” University of Kassel, Kassel, Germany, 2008.
27. Jungwirth, J., “Zum tragverhalten von zugbeanspruchten bauteilen aus ultra-hochleistungs-faserbeton,” doctoral thesis, School of Architecture, Civil and Environmental, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2006.
28. Sturm, A. B.; Visintin, P.; Oehlers, D. J.; and Seracino, R., “Time-Dependent Tension-Stiffening Mechanics of Fiber-Reinforced and Ultra-High-Performance Fiber-Reinforced Concrete,” Journal of Structural Engineering, ASCE, V. 144, No. 8, 2018, p. 04018122. doi: 10.1061/(ASCE)ST.1943-541X.0002107
29. Voo, J., and Foster, S., “Variable Engagement Model for the Design of Fiber Reinforced Concrete Structures,” The University of New South Wales, Sydney, Australia, 2003.
30. Lee, S.-C.; Cho, J.-Y.; and Vecchio, F. J., “Diverse Embedment Model for Steel Fiber-Reinforced Concrete in Tension: Model Development,” ACI Materials Journal, V. 108, No. 5, Sept.-Oct. 2011, pp. 516-525.
31. Lee, S.-C.; Cho, J.-Y.; and Vecchio, F. J., “Simplified Diverse Embedment Model for Steel Fiber-Reinforced Concrete Elements in Tension,” ACI Materials Journal, V. 110, No. 4, July-Aug. 2013, pp. 403-412.
32. Ng, T.; Htut, T.; and Foster, S., “Fracture of Steel Fiber Reinforced Concrete – The Unified Variable Engagement Model,” School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia, 2012.
33. Leutbecher, T., and Fehling, E., “Tensile Behavior of Ultra-High-Performance Concrete Reinforced with Reinforcing Bars and Fibers: Minimizing Fiber Content,” ACI Structural Journal, V. 109, No. 2, Mar.-Apr. 2012, pp. 253-264.
34. Marti, P.; Alvarez, M.; Kaufmann, W.; and Sigrist, V., “Tension Chord Model for Structural Concrete,” Structural Engineering International, V. 8, No. 4, 1998, pp. 287-298. doi: 10.2749/101686698780488875
35. Li, V. C.; Stang, H.; and Krenchel, H., “Micromechanics of Crack Bridging in Fibre-Reinforced Concrete,” Materials and Structures, V. 26, No. 8, 1993, pp. 486-494. doi: 10.1007/BF02472808
36. Hillerborg, A.; Modéer, M.; and Petersson, P.-E., “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement and Concrete Research, V. 6, No. 6, 1976, pp. 773-781. doi: 10.1016/0008-8846(76)90007-7
37. Sigrist, V., “Zum Verformungsvermögen von Stahlbetonträgern,” doctoral thesis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 1995.
38. Alvarez, M., “Einfluss des Verbundverhaltens auf das Verformungsvermögen von Stahlbeton,” doctoral thesis, Institute for Structural Analysis and Design, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 1998.
39. Pfyl, T., and Marti, P., “Versuche an stahlfaserverstärkten Stahlbetonelementen,” ETH Zurich, Zurich, Switzerland, 2001.
40. Aghdasi, P., and Ostertag, C. P., “Tensile Fracture Characteristics of Green Ultra-High Performance Fiber-Reinforced Concrete (G-UHP-FRC) with Longitudinal Steel Reinforcement,” Cement and Concrete Composites, V. 114, Nov. 2020, p. 103749. doi: 10.1016/j.cemconcomp.2020.103749
41. fib Bulletin 51, “Structural Concrete: Textbook on Behavior, Design and Performance,” fédération internationale du béton, Lausanne, Switzerland, 2009.
42. Khorami, M.; Navarro-Gregori, J.; and Serna, P., “The Effect of Fiber Content on the Post-Cracking Tensile Stiffness Capacity of R-UHPFRC,” Fibre Reinforced Concrete: Improvements and Innovations, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, and J. Navarro-Gregori, eds., Springer, 2020, pp. 1112-1123.
43. Aghdasi, P., and Ostertag, C. P., “Green Ultra-High Performance Fiber-Reinforced Concrete (G-UHP-FRC),” Construction & Building Materials, V. 190, Nov. 2018, pp. 246-254. doi: 10.1016/j.conbuildmat.2018.09.111
44. Association Française de Normalisation, “National Addition to Eurocode 2 – Design of Concrete Structures: Specific Rules for Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC),” AFNOR, La Plaine Saint-Denis, France, 201