Deformation Performance and Fracture Toughness of Carbon Nanofiber Modified Cement-Based Materials

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Deformation Performance and Fracture Toughness of Carbon Nanofiber Modified Cement-Based Materials

Author(s): Tao Shi, Yanming Liu, Zhuojun Hu, Muqiu Cen, Chen Zeng, Jinhao Xu, and Zhifang Zhao

Publication: Materials Journal

Volume: 119

Issue: 5

Appears on pages(s): 119-128

Keywords: carbon nanofibers; cement-based materials; deformation properties; double-K fracture parameters; fracture energy

DOI: 10.14359/51735976

Date: 9/1/2022

Abstract:
In this study, carbon nanofibers (CNFs) were uniformly dispersed into cement-based materials by the ultrasonic dispersion method to prepare cement-based materials modified by CNFs, and the deformation performance and fracture toughness of the CNF-modified cement-based materials were studied. The results showed that CNFs could inhibit the autogenous shrinkage and drying shrinkage of cement paste, and significantly delay the cracking time of cement mortar. When the dosage of CNFs was 0.05 wt%, the cracking time of cement mortar was extended by nearly 1.5 times longer than that of the control group. The fracture performance of the CNF-modified cement mortar was studied by the fracture test of a three-point bending beam, and the fracture toughness of the mortar was evaluated by double-K fracture parameters. The results showed that at 0.05 wt% dosage of CNFs, the unstable fracture toughness and fracture energy of the mortar increased by 53.5% and 17.2%, respectively. Scanning electron microscopy images illustrated that CNFs could produce bridging and pullout effects in the cement-based materials and retard crack propagation, thus reducing shrinkage deformation and improving fracture toughness.

Related References:

1. Tyson, B.; Abu Al-Rub, R.; Yazdanbakhsh, A.; and Grasley, Z., “Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials,” Journal of Materials in Civil Engineering, ASCE, V. 23, No. 7, 2011, pp. 1028-1035. doi: 10.1061/(ASCE)MT.1943-5533.0000266

2. Zhao, Y.; Liu, Y.; Shi, T.; Gu, Y.; Zheng, B.; Zhang, K.; Xu, J.; Fu, Y.; and Shi, S., “Study of Mechanical Properties and Early-Stage Deformation Properties of Graphene-Modified Cement-Based Materials,” Construction and Building Materials, V. 257, 2020, p. 119498. doi: 10.1016/j.conbuildmat.2020.119498

3. Shi, T.; Li, Z.; Guo, J.; Gong, H.; and Gu, C., “Research Progress on CNTs/CNFs-Modified Cement-Based Composites—A Review,” Construction and Building Materials, V. 202, 2019, pp. 290-307. doi: 10.1016/j.conbuildmat.2019.01.024

4. Li, G., “Properties of High-Volume Fly Ash Concrete Incorporating Nano-SiO2,” Cement and Concrete Research, V. 34, No. 6, 2004, pp. 1043-1049. doi: 10.1016/j.cemconres.2003.11.013

5. Polat, R.; Demirboga, R.; and Karagöl, F., “The Effect of Nano-MgO on the Setting Time, Autogenous Shrinkage, Microstructure and Mechanical Properties of High Performance Cement Paste and Mortar,” Construction and Building Materials, V. 156, Dec. 2017, pp. 208-218. doi: 10.1016/j.conbuildmat.2017.08.168

6. Ye, Y.; Liu, Y.; Shi, T.; Hu, Z.; Zhong, L.; Wang, H.; and Chen, Y., “Effect of Nano-Magnesium Oxide on the Expansion Performance and Hydration Process of Cement-Based Materials,” Materials (Basel), V. 14, No. 13, 2021, p. 3766. doi: 10.3390/ma14133766

7. Lan, Y.; Shi, T.; Fu, Y.; Ke, Y.; Zheng, B.; Liu, Y.; and Zhao, Y., “Preliminary Investigation on Silicon Carbide Whisker-Modified Cement-Based Composites,” Open Ceramics, V. 6, 2021, p. 100107. doi: 10.1016/j.oceram.2021.100107

8. Shi, T.; Gao, Y.; Corr, D. J.; and Shah, S. P., “FTIR Study on Early-Age Hydration of Carbon Nanotubes-Modified Cement-Based Materials,” Advances in Cement Research, V. 31, No. 8, 2019, pp. 353-361. doi: 10.1680/jadcr.16.00167

9. Ren, M.; Shi, T.; Corr, D. J.; and Shah, S. P., “Mechanical Properties of Micro-regions in Cement-based Material Based on the PeakForce QNM Mode of AFM,” Journal of Wuhan University of Technology-Mater Sci Ed, V. 34, No. 4, 2019, pp. 893-899. doi: 10.1007/s11595-019-2134-7

10. Zhao, J., “Carbon Nanofiber and its Applications,” HI-TECH Fiber & Application, No. 4, 2003, pp. 48-50. (in Chinese) doi: 10.3969/j.issn.1007-9815.2003.02.002

11. Xiao, L.; Li, G.; Yang, S.; Zhang, L.; Jin, J.; and Jiang, J., “Structure and Properties of PAN/PMMA Carbon Nanofiber,” China Synthetic Fiber Industry, V. 33, 2010, pp. 1-4. (in Chinese) doi: 10.3969/j.issn.1001-0041.2010.01.001

12. Gdoutos, E.; Konsta, M.; Danoglidis, P.; and Shah, S., “Advanced Cement Based Nanocomposites Reinforced with MWCNTs and CNFs,” Frontiers of Structural and Civil Engineering, V. 10, No. 2, 2016, pp. 142-149. doi: 10.1007/s11709-016-0342-1

13. Barbhuiya, S., and Chow, P., “Nanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers,” Materials (Basel), V. 10, No. 6, 2017, p. 662. doi: 10.3390/ma10060662

14. Wang, B.; Zhang, Y.; and Ma, H., “Porosity and Pore Size Distribution Measurement of Cement/Carbon Nanofiber Composites by 1H Low Field Nuclear Magnetic Resonance,” Journal of Wuhan University of Technology-Materials Science Edition, V. 29, No. 1, 2014, pp. 82-88. doi: 10.1007/s11595-014-0871-1

15. Meng, W., and Khayat, K. H., “Effect of Graphite Nanoplatelets and Carbon Nanofibers on Rheology, Hydration, Shrinkage, Mechanical Properties, and Microstructure Of UHPC,” Cement and Concrete Research, V. 105, 2018, pp. 64-71. doi: 10.1016/j.cemconres.2018.01.001

16. Metaxa, Z. S.; Konsta-Gdoutos, M. S.; and Shah, S. P., “Carbon Nanofiber Cementitious Composites: Effect of Debulking Procedure on Dispersion and Reinforcing Efficiency,” Cement and Concrete Composites, V. 36, 2013, pp. 25-32. doi: 10.1016/j.cemconcomp.2012.10.009

17. Gay, C., and Sanchez, F., “Performance of Carbon Nanofiber–Cement Composites with a High-Range Water Reducer,” Transportation Research Record: Journal of the Transportation Research Board, V. 2142, No. 1, 2010, pp. 109-113. doi: 10.3141/2142-16

18. Galao, O.; Zornoza, E.; Baeza, F. J.; and Garces, P. A., “Effect of Carbon Nanofiber Addition in the Mechanical Properties and Durability of Cementitious Materials,” Materiales de Construcción, V. 62, No. 307, 2012, pp. 343-357. doi: 10.3989/mc.2012.01211

19. Hardy, D. K.; Fadden, M. F.; Khattak, M. J.; and Khattab, A., “Development and Characterization of Self-Sensing CNF HPFRCC,” Materials and Structures, V. 49, No. 12, 2016, pp. 5327-5342. doi: 10.1617/s11527-016-0863-z

20. Zhu, X.; Gao, Y.; Dai, Z.; Corr, D. J.; and Shah, S. P., “Effect of Interfacial Transition Zone on the Young’s Modulus of Carbon Nanofiber Reinforced Cement Concrete,” Cement and Concrete Research, V. 107, 2018, pp. 49-63. doi: 10.1016/j.cemconres.2018.02.014

21. Dalla, P. T.; Dassios, K. G.; Tragazikis, I. K.; Exarchos, D. A.; and Matikas, T. E., “Carbon Nanotubes and Nanofibers as Strain and Damage Sensors for Smart Cement,” Materials Today Communications, V. 8, 2016, pp. 196-204. doi: 10.1016/j.mtcomm.2016.07.004

22. Liu, C. Q.; Fang, D. J.; and Zhao, L. J., “Reflection on Earthquake Damage of Buildings in 2015 Nepal Earthquake and Seismic Measures for Post-Earthquake Reconstruction,” Structures, V. 30, 2021, pp. 647-658. doi: 10.1016/j.istruc.2020.12.089

23. Ma, Y.; Che, Y.; and Gong, J. X., “Behavior of Corrosion Damaged Circular Reinforced Concrete Columns Under Cyclic Loading,” Construction and Building Materials, V. 29, 2012, pp. 548-556. doi: 10.1016/j.conbuildmat.2011.11.002

24. Ma, Y.; Wang, D. S.; Cheng, H.; and Shi, Y., “Bayesian Theory-Based Seismic Failure Modes Identification of Reinforced Concrete Columns,” Journal of Earthquake Engineering, V. 06, 2021, pp. 1-21. doi: 10.1080/13632469.2021.1927905

25. Blandine, F.; Habermehi-Cwirzen, K.; and Cwirzen, A., “Contribution of CNTs/CNFs Morphology to Reduction of Autogenous Shrinkage of Portland Cement Paste,” Frontiers of Structural and Civil Engineering, V. 10, No. 2, 2016, pp. 224-235. doi: 10.1007/s11709-016-0331-4

26. Hogancamp, J., and Grasley, Z., “The Use of Microfine Cement to Enhance the Efficacy of Carbon Nanofibers with Respect to Drying Shrinkage Crack Resistance of Portland Cement Mortars,” Cement and Concrete Composites, V. 83, 2017, pp. 405-414. doi: 10.1016/j.cemconcomp.2017.08.006

27. Metaxa, Z. S.; Konsta-Gdoutos, M. S; and Shah, S. P., “Carbon Nanofiber-Reinforced Cement-Based Materials,” Transportation Research Record: Journal of the Transportation Research Board, V. 2142, No. 1, 2010, pp. 114-118. doi: 10.3141/2142-17

28. Lim, J.; Raman, S.; Safiuddin, M.; Zain, M.; and Hamid, R., “Autogenous Shrinkage, Microstructure, and Strength of Ultra-High Performance Concrete Incorporating Carbon Nanofibers,” Materials (Basel), V. 12, No. 2, 2019, doi: 10.3390/ma12020320

29. Abu Al-Rub, R. K.; Tyson, B.; Yazdanbakhsh, A.; and Grasley, Z., “Mechanical Properties of Nanocomposite Cement Incorporating Surface-Treated and Untreated Carbon Nanotubes and Carbon Nanofibers,” Journal of Nanomechanics & Micromechanics, ASCE, V. 2, No. 1, 2012, pp. 1-6. doi: 10.1061/(ASCE)NM.2153-5477.0000041

30. ASTM C1581-04, “Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage,” ASTM International, West Conshohocken, PA, 2004, 3 pp.

31. Xu, S.; Lyu, Y.; Xu, S.; and Li, Q., “Enhancing the Initial Cracking Fracture Toughness of Steel-Polyvinyl Alcohol Hybrid Fibers Ultra High Toughness Cementitious Composites by Incorporating Multi-Walled Carbon Nanotubes,” Construction and Building Materials, V. 195, 2019, pp. 269-282. doi: 10.1016/j.conbuildmat.2018.10.133

32. Li, X.; and Luo, S. “Fracture Properties of Graphene Oxide Reinforced Cement Composites,” Acta Materiae Compositae Sinica, V. 38, No. 2, 2021, pp. 1-10. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20200610.005

33. Zhang, Y.; Cheng, Y.; Zhang, T.; Wang, B.; and Xiao, H., “Autogenous Shrinkage of High-Performance Cement-Based Carbon Nanofiber Composites,” Materials Express, V. 9, No. 3, 2019, pp. 213-225. doi: 10.1166/mex.2019.1491

34. Shi, T.; Li, Z.; and Li, S., “Autogenous Shrinkage and Crack Resistance of Carbon Nanotubes Reinforced Cement Based Composites,” Acta Materiae Compositae Sinica, V. 36, No. 6, 2019, pp. 1528-1535. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20181210.002

35. Parveen, S.; Rana, S.; and Fangueiro, R., “A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites,” Journal of Nanomaterials, V. 2013, No. 7, 2013, pp. 1-19. doi: 10.1155/2013/710175

36. Akono, A. T., “Nanostructure and Fracture Behavior of Carbon Nanofiber-Reinforced Cement Using Nanoscale Depth-Sensing Methods,” Materials (Basel), V. 13, No. 17, 2020, p. 3837. doi: 10.3390/ma13173837

37. He, S., and Yang, E. H., “Strategic Strengthening of the Interfacial Transition Zone (ITZ) Between Microfiber and Cement Paste Matrix with Carbon Nanofibers (CNFs),” Cement and Concrete Composites, V. 119, 2021, p. 104019. doi: 10.1016/j.cemconcomp.2021.104019

38. Gopalakrishnan, K.; Birgisson, B.; Taylor, P.; and Attoh-Okine, N.; “Nanotechnology in Civil Infrastructure: A Paradigm Shift,” Springer Berlin Heidelberg, 2011, pp. 103-130. doi: 10.1007/978-3-642-16657-0

39. Stephens, C.; Brown, L.; and Sanchez, F., “Quantification of the Re-Agglomeration of Carbon Nanofiber Aqueous Dispersion in Cement Pastes and Effect on the Early Age Flexural Response,” Carbon, V. 107, 2016, pp. 482-500. doi: 10.1016/j.carbon.2016.05.076

40. Lu, Z.; Li, X.; Hanif, A.; Chen, B.; Parthasarathy, P.; Yu, J.; and Li, Z., “Early-Age Interaction Mechanism Between the Graphene Oxide and Cement Hydrates,” Construction and Building Materials, V. 152, 2017, pp. 232-239. doi: 10.1016/j.conbuildmat.2017.06.176

41. Jiang, Z.; Sun, Z.; and Wang, P., “Study on Autogenous Relative Humidity Change and Autogenous Shrinkage of Cement Pastes,” Journal of Building Materials, V. 6, No. 4, 2003, pp. 345-349. (in Chinese) doi: 10.3969/j.issn.1007-9629.2003.04.002

42. Gdoutos, E. E.; Konsta-Gdoutos, M. S.; and Danoglidis, P. A., “Portland Cement Mortar Nanocomposites at Low Carbon Nanotube and Carbon Nanofiber Content: A Fracture Mechanics Experimental Study,” Cement and Concrete Composites, V. 70, July 2016, pp. 110-118. doi: 10.1016/j.cemconcomp.2016.03.010

43. Hawreen, A.; Bogas, J. A.; and Dias, A. P. S., “On the Mechanical and Shrinkage Behavior of Cement Mortars Reinforced with Carbon Nanotubes,” Construction and Building Materials, V. 168, 2018, pp. 459-470. doi: 10.1016/j.conbuildmat.2018.02.146

44. Harutyunyan, V. S.; Abovyan, E. S.; Monteiro, P. J. M.; Mkrtchyan, V. P.; and Balyan, M. K., “Microstrain Distribution in Calcium Hydroxide Present in the Interfacial Transition Zone,” Cement and Concrete Research, V. 30, No. 5, 2000, pp. 709-713. doi: 10.1016/S0008-8846(00)00230-1

45. Harutyunyan, V. S.; Abovyan, E. S.; Monteiro, P. J. M.; Mkrtchyan, V. P.; Balyan, M. K.; and Aivazyan, A. P., “X‐Ray Diffraction Investigations of Microstructure of Calcium Hydroxide Crystallites in the Interfacial Transition Zone of Concrete,” Journal of the American Ceramic Society, V. 86, No. 12, 2003, pp. 2162-2166. doi: 10.1111/j.1151-2916.2003.tb03625.x

46. Wang, H.; Zhang, A.; Zhang, L.; Wang, Q.; Yang, X.; Gao, X.; and Shi, F., “Electrical and Piezoresistive Properties of Carbon Nanofiber Cement Mortar Under Different Temperatures and Water Contents,” Construction and Building Materials, V. 265, No. 6, 2020, p. 120740. doi: 10.1016/j.conbuildmat.2020.120740

47. Shimoda, K.; Hinoki, T.; and Kohyama, A., “Effect Of Carbon Nanofibers (CNFs) Content on Thermal and Mechanical Properties of CNFs/SiC Nanocomposites,” Composites Science and Technology, V. 70, No. 2, 2010, pp. 387-392. doi: 10.1016/j.compscitech.2009.11.013

48. Mazo, M. A.; Tamayo, A.; Caballero, A. C.; and Rubio, J., “Enhanced Electrical and Thermal Conductivities of Silicon Oxycarbide Nanocomposites Containing Carbon Nanofibers,” Carbon, V. 138, 2018, pp. 42-51. doi: 10.1016/j.carbon.2018.05.075

49. Brown, L., and Sanchez, F., “Influence of Carbon Nanofiber Clustering on the Chemo-Mechanical Behavior of Cement Pastes,” Cement and Concrete Composites, V. 65, 2016, pp. 101-109. doi: 10.1016/j.cemconcomp.2015.10.008

50. Konsta-Gdoutos, M. S.; Metaxa, Z. S.; and Shah, S. P., “Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials,” Cement and Concrete Research, V. 40, No. 7, 2010, pp. 1052-1059. doi: 10.1016/j.cemconres.2010.02.015

51. Konsta-Gdoutos, M. S.; Metaxa, Z. S.; and Shah, S. P., “Multi-Scale Mechanical and Fracture Characteristics and Early-Age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites,” Cement and Concrete Composites, V. 32, No. 2, 2010, pp. 110-115. doi: 10.1016/j.cemconcomp.2009.10.007

52. He, S.; Li, Z.; and Yang, E. H., “Quantitative Characterization of Anisotropic Properties of the Interfacial Transition Zone (ITZ) Between Microfiber and Cement Paste,” Cement and Concrete Research, V. 122, 2019, pp. 136-146. doi: 10.1016/j.cemconres.2019.05.007

53. Du, M.; Jing, H.; Gao, Y.; Su, H.; and Fang, H., “Carbon Nanomaterials Enhanced Cement-Based Composites: Advances and Challenges,” Nanotechnology Reviews, V. 9, No. 1, 2020, pp. 115-135. doi: 10.1515/ntrev-2020-0011

54. Wang, B.; Guo, B.; Han, Y.; Zhang, Y.; and Li, Y., “Microstructure Synthesis and Characterization of Carbon Nanofibers Reinforced Cement-Based Composites,” Journal of Testing and Evaluation, V. 47, No. 6, 2019, p. 20180270. doi: 10.1520/JTE20180270

55. Autumn, K., and Peattie, A. M., “Mechanisms of Adhesion in Geckos,” Integrative and Comparative Biology, V. 42, No. 6, 2002, pp. 1081-1090. doi: 10.1093/icb/42.6.1081

56. Autumn, K.; Sitti, M.; Liang, Y.; Peattie, A.; Hansen, W.; Sponberg, S.; Kenny, T.; Fearing, R.; Israelachvili, J.; and Full, R., “Evidence for Van Der Waals Adhesion in Gecko Setae,” Proceedings of the National Academy of Sciences of the United States of America, V. 99, No. 19, 2002, pp. 12252-12256. doi: 10.1073/pnas.192252799


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer