Textile Reinforced Concrete Sandwich Panels: A Review

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Textile Reinforced Concrete Sandwich Panels: A Review

Author(s): Alein J S and M. Bhuvaneshwari

Publication: Structural Journal

Volume: 119

Issue: 5

Appears on pages(s): 207-216

Keywords:

DOI: 10.14359/51734899

Date: 9/1/2022

Abstract:
Sandwich panels are commonly used in the construction industry as wall panels due to their quick and easy construction, light weight, and thermal and insulation characteristics. Sandwich composite panels using textile reinforcement are in the developing stage and further work is required to be carried out in this field. Thin sandwich panels can be manufactured using textile reinforcement, which is of lighter weight and gives better structural performance. This paper first reviews the different core materials that can be used in manufacturing of sandwich panels with this manufacturing technique adopted. Next, it critically reviews the work done thus far regarding textile-reinforced sandwich panels, and their performance evaluated by researchers is presented with a statistical study performed. The practical applications are also discussed with the future scope. In general, this paper presents a clear view on textile-reinforced sandwich panels with their advantages.

Related References:

1. Portal, N. W.; Flansbjer, M.; Zandi, K.; Wlasak, L.; and Malaga, K., “Bending Behaviour of Novel Textile Reinforced Concrete-Foamed Concrete (TRC-FC) Sandwich Elements,” Composite Structures, V. 177, 2017, pp. 104-118. doi: 10.1016/j.compstruct.2017.06.051

2. Shams, A.; Stark, A.; Hoogen, F.; Hegger, J.; and Schneider, H., “Innovative Sandwich Structures Made of High-Performance Concrete and Foamed Polyurethane,” Composite Structures, V. 121, 2015, pp. 271-279. doi: 10.1016/j.compstruct.2014.11.026

3. O’Hegarty, R., and Kinnane, O., “Review of Precast Concrete Sandwich Panels and Their Innovations,” Construction and Building Materials, V. 233, 2020, p. 117145. doi: 10.1016/j.conbuildmat.2019.117145

4. Colombo, I. G.; Colombo, M.; and Di Prisco, M., “Bending behaviour of Textile Reinforced Concrete Sandwich Beams,” Construction and Building Materials, V. 95, 2015, pp. 675-685. doi: 10.1016/j.conbuildmat.2015.07.169

5. Hegger, J., and Voss, S., “Investigations on the Bearing Behaviour and Application Potential of Textile Reinforced Concrete,” Engineering Structures, V. 30, No. 7, 2008, pp. 2050-2056. doi: 10.1016/j.engstruct.2008.01.006

6. Joseph, J. D.; Prabakar, J.; and Alagusundaramoorthy, P., “Precast Concrete Sandwich One-Way Slabs Under Flexural Loading,” Engineering Structures, V. 138, 2017, pp. 447-457. doi: 10.1016/j.engstruct.2017.02.033

7. Grosse, C. U., ed., Advances in Construction Materials, Springer Science & Business Media, 2007.

8. Portal, N. W.; Zandi, K.; Malaga, K.; and Wlasak, L., “GFRP Connectors in Textile Reinforced Concrete Sandwich Elements,” 19th IABSE Congress Stockholm 2016: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, 2016, pp. 1336-1343.

9. Raoof, S. M.; Koutas, L. N.; and Bournas, D. A., “Textile-Reinforced Mortar (TRM) Versus Fibre-Reinforced Polymers (FRP) in Flexural Strengthening of RC Beams,” Construction and Building Materials, V. 151, 2017, pp. 279-291. doi: 10.1016/j.conbuildmat.2017.05.023

10. Xia, F.; Wu, X. Q.; and Li, J. L., “Numerical Simulation of Impact Responses on Through-Thickness Stitched Foam Core Sandwich Composite,” Applied Composite Materials, V. 20, No. 6, 2013, pp. 1041-1054. doi: 10.1007/s10443-013-9312-0

11. Krishnaraj, L.; Prasath Kumar, V. R.; Balasubramanian, M.; Kumar, N.; and Shyamala, T., “Futuristic Evaluation of Building Energy Simulation Model with Comparison of Conventional Villas,” International Journal of Construction Management, V. 22, No. 1, 2022, pp. 31-40.

12. Krishnaraj, L.; Prasath Kumar, V. R.; Prerna, D.; Kumar, R. S.; Sudarsan, J. S.; and Nithiyanantham, S., “Design and Thermal Analysis of the Conventional Residential Building Using Building Information Modeling,” Journal of Building Pathology and Rehabilitation, V. 6, No. 1, 2021, pp. 1-10. doi: 10.1007/s41024-021-00133-2

13. Dey, V.; Zani, G.; Colombo, M.; Di Prisco, M.; and Mobasher, B., “Flexural Impact Response of Textile-Reinforced Aerated Concrete Sandwich Panels,” Materials and Design, V. 86, 2015, pp. 187-197. doi: 10.1016/j.matdes.2015.07.004

14. Du, Y.; Zhang, X.; Zhou, F.; Zhu, D.; Zhang, M.; and Pan, W., “Flexural Behavior of Basalt Textile-Reinforced Concrete,” Construction and Building Materials, V. 183, 2018, pp. 7-21. doi: 10.1016/j.conbuildmat.2018.06.165

15. Liu, C.; Cai, D.; Zhou, G.; and Lu, F., “Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites,” Applied Composite Materials, V. 24, No. 5, 2017, pp. 1151-1163. doi: 10.1007/s10443-016-9581-5

16. Freedman, S., “Architectural Precast Concrete: A Material for the 21st Century,” Exterior Wall Systems: Glass and Concrete Technology, Design, and Construction, ASTM International, West Conshohocken, PA, 1991.

17. O’Hegarty, R.; Kinnane, O.; Grimes, M.; Newell, J.; Clifford, M.; and West, R., “Development of Thin Precast Concrete Sandwich Panels: Challenges and Outcomes,” Construction and Building Materials, V. 267, 2021, p. 120981. doi: 10.1016/j.conbuildmat.2020.120981

18. Hegger, J.; Horstmann, M.; and Zell, M., “Applications for TRC,” Proceedings of the 15th International Congress of the GRCA, Prague, Czech Republic, 2008, pp. 20-23.

19. Hegger, J., and Voss, S., “Textile Reinforced Concrete Façades,” Concrete Structures: the Challenge of Creativity: Proceedings of the fib symposium, 2004, pp. 168-169.

20. Kulas, C., “Actual Applications and Potential of Textile-Reinforced Concrete,” GRC 2015, Dubai, UAE, 2015, 11 pp.

21. Fan, H.; Yang, W.; and Zhou, Q., “Experimental Research of Compressive Responses of Multi-Layered Woven Textile Sandwich Panels Under Quasi-Static Loading,” Composites. Part B, Engineering, V. 42, No. 5, 2011, pp. 1151-1156. doi: 10.1016/j.compositesb.2011.03.008

22. Segura-Castillo, L.; Garcia, N.; Rodríguez Viacava, I.; and Rodríguez de Sensale, G., “Structural Model for Fibre-Reinforced Precast Concrete Sandwich Panels,” Advances in Civil Engineering, V. 2018, 2018, pp. 1-11. doi: 10.1155/2018/3235012

23. Cuypers, H., and Wastiels, J., “Analysis and Verification of the Performance of Sandwich Panels with Textile Reinforced ConcreteFaces,” The Journal of Sandwich Structures & Materials, V. 13, No. 5, 2011, pp. 589-603. doi: 10.1177/1099636211408665

24. Al-Ayish, N.; Mueller, U.; Malaga, K.; and Gudmundsson, K., “Life Cycle Assessment of Façade Solutions Made of Durable Reactive Powder Concrete,” XIV DBMC 14th International Conference on Durability of Building Materials and Components, 2017.

25. Djamai, Z. I.; Bahrar, M.; Salvatore, F.; Si Larbi, A.; and El Mankibi, M., “Textile Reinforced Concrete Multiscale Mechanical Modelling: Application to TRC Sandwich Panels,” Finite Elements in Analysis and Design, V. 135, 2017, pp. 22-35. doi: 10.1016/j.finel.2017.07.003

26. Tian, W. L., and Zhang, L. M., “Study on Bond Properties of Textile Reinforced Concrete,” Advanced Materials Research, V. 639, 2013, pp. 334-340. doi: 10.4028/www.scientific.net/AMR.639-640.334

27. Yin, S. P., and Xu, S. L., “An Experimental Study on Improved Mechanical Behavior of Textile-Reinforced Concrete,” Advanced Materials Research, V. 168, 2011, pp. 1850-1853.

28. Magnucki, K.; Jasion, P.; Krus, M.; Kuligowski, P.; and Wittenbeck, L., “Strength and Buckling of Sandwich Beams with Corrugated Core,” Journal of Theoretical and Applied Mechanics, V. 51, No. 1, 2013, pp. 15-24.

29. PCI Committee on Precast Sandwich Wall Panels, “State of the Art of Precast/Prestressed Concrete Sandwich Wall Panels,” PCI Journal, V. 56, No. 2, 2011, pp. 131-176.

30. Daliri, V., and Zeinedini, A., “Flexural Behavoiur of the Composite Sandwich Panels with Novel and Regular Corrugated Cores,” Applied Composite Materials, V. 26, No. 3, 2019, pp. 963-982. doi: 10.1007/s10443-019-09761-x

31. Shams, A.; Hegger, J.; and Horstmann, M., “An Analytical Model for Sandwich Panels Made of Textile-Reinforced Concrete,” Construction and Building Materials, V. 64, 2014, pp. 451-459. doi: 10.1016/j.conbuildmat.2014.04.025

32. Venkatachalam, G.; Reddy, D. M.; Tiwari, S. K.; Satonkar, N.; and Kovalan, S., “Fracture and Flexural Analysis of Sandwich Panel with Polypropylene Honeycomb as Core and Jute Fabric Reinforced Epoxy Matrix Composite as Skin Layer,” Materials Research Express, V. 6, No. 11, 2019, p. 115348. doi: 10.1088/2053-1591/ab4f0e

33. Sutton, A.; Black, D.; and Walker, P., “Natural Fibre Insulation: Information Paper IP 18/11,” IHS BRE Press, Garston, UK. 2011.

34. Hegger, J.; Zell, M.; and Horstmann, M., “Textile Reinforced Concrete–Realization in Applications,” Proceedings: International fib Symposium Tailor Made Concrete Structures: New Solutions for Our Society, 2008, pp. 357-362.

35. Bai, F., and Davidson, J. S., “Analysis of Partially Composite Foam Insulated Concrete Sandwich Structures,” Engineering Structures, V. 91, 2015, pp. 197-209. doi: 10.1016/j.engstruct.2015.02.033

36. Li, S.; Zhang, B.; Yang, D.; Wang, H.; Liu, Y.; He, H.; and Fan, H., “Mechanical and Thermal Insulate Behaviors of Pultruded GFRP Truss-Core Sandwich Panels Filled with EPS Mortar,” Archives of Civil and Mechanical Engineering, V. 21, No. 2, 2021, 2 pp. doi: 10.1007/s43452-021-00232-4

37. Zhou, J.; Hassan, M. Z.; Guan, Z.; and Cantwell, W. J., “The Low Velocity Impact Response of Foam-Based Sandwich Panels,” Composites Science and Technology, V. 72, No. 14, 2012, pp. 1781-1790. doi: 10.1016/j.compscitech.2012.07.006

38. Taghizadeh, S. A.; Farrokhabadi, A.; Liaghat, G.; Pedram, E.; Malekinejad, H.; Mohammadi, S. F.; and Ahmadi, H., “Characterization of Compressive Behavior of PVC Foam Infilled Composite Sandwich Panels with Different Corrugated Core Shapes,” Thin-walled Structures, V. 135, 2019, pp. 160-172. doi: 10.1016/j.tws.2018.11.019

39. Mirza, P. M.; Beheshti, M.; and Vafaian, M., “The Response of Sandwich Panels with Rigid Polyurethane Foam Cores under Flexural Loading,” Iranian Polymer Journal, V. 14, No. 12, 2015, pp. 1082-1088..

40. Mai, B. T.; Nguyen Huy, C.; Ngo Dang, Q.; and Dinh Huu, T., “Experimental Study on Flexural and Shear Behaviour of Sandwich Panels Using Glass Textile Reinforced Concrete and Autoclaved Aerated Concrete,” Transport and Communications Science Journal., V. 71, No. 1, 2020, pp. 18-26. doi: 10.25073/tcsj.71.1.3

41. Vinith Kumar, N.; Arunkumar, C.; and Srinivasa Senthil, S., “Experimental Study on Mechanical and Thermal Behavior of Foamed Concrete,” Materials Today: Proceedings, V. 5, No. 2, 2018, pp. 8753-8760. doi: 10.1016/j.matpr.2017.12.302

42. Gunasekaran, K.; Annadurai, R.; and Kumar, P. S., “Study on Reinforced Lightweight Coconut Shell Concrete Beam Behavior Under Flexure,” Materials and Design, V. 46, 2013, pp. 157-167. doi: 10.1016/j.matdes.2012.09.044

43. Aghaee, K., and Foroughi, M., “Mechanical Properties of Lightweight Concrete Partition with a Core of Textile Waste,” Advances in Civil Engineering, 2013, pp. 1-7. doi: 10.1155/2013/482310

44. Amran, Y. M.; Rashid, R. S.; Hejazi, F.; Safiee, N. A.; and Ali, A. A. A., “Response of Precast Foamed Concrete Sandwich Panels to Flexural Loading,” Journal of Building Engineering, V. 7, 2016, pp. 143-158. doi: 10.1016/j.jobe.2016.06.006

45. Sohel, K. M.; Liew, J. Y.; and Zhang, M. H., “Analysis and Design of Steel-Concrete Composite Sandwich Systems Subjected to Extreme Loads,” Frontiers of Architecture and Civil Engineering in China, V. 5, No. 3, 2011, pp. 278-293. doi: 10.1007/s11709-011-0120-z

46. Shams, A.; Horstmann, M.; and Hegger, J., “Experimental Investigations on Textile-Reinforced Concrete (TRC) Sandwich Sections,” Composite Structures, V. 118, 2014, pp. 643-653. doi: 10.1016/j.compstruct.2014.07.056

47. Djama , K.; Michel, L.; Ferrier, E.; and Gabor, A., “Hybrid Sandwich Panels for Building Uses: Focus on Glass Fibre Reinforced Polymer and Mineral Matrix Interface,” MATEC Web of Conferences, V. 289, 2019, p. 10006.

48. Hamed, E., “Load-Carrying Capacity of Composite Precast Concrete Sandwich Panels with Diagonal Fiber-Reinforced-Polymer Bar Connectors,” PCI Journal, V. 62, No. 4, 2017, pp. 34-44.

49. Pessik, S., and Mlynarczyk, A., “Experimental Evaluation of the Composite Behavior of Precast Concrete Sandwich Wall Panels,” PCI Journal, V. 48, No. 2, 2003, pp. 54-71. doi: 10.15554/pcij.03012003.54.71

50. Gopinath, S.; Ramesh Kumar, V.; Sheth, H.; Ramachandra Murthy, A.; and Iyer, N. R., “Pre-Fabricated Sandwich Panels Using Cold-Formed Steel and Textile Reinforced Concrete,” Construction and Building Materials, V. 64, 2014, pp. 54-59. doi: 10.1016/j.conbuildmat.2014.04.06810.1016/j.conbuildmat.2014.04.068

51. Benayoune, A.; Samad, A. A.; Trikha, D. N.; Ali, A. A.; and Ellinna, S. H., “Flexural Behaviour of Pre-Cast Concrete Sandwich Composite Panel–Experimental and Theoretical Investigations,” Construction and Building Materials, V. 22, No. 4, 2008, pp. 580-592. doi: 10.1016/j.conbuildmat.2006.11.023

52. Chen, A.; Norris, T. G.; Hopkins, P. M.; and Yossef, M., “Experimental Investigation and Finite Element Analysis of Flexural Behavior of Insulated Concrete Sandwich Panels with FRP Plate Shear Connectors,” Engineering Structures, V. 98, 2015, pp. 95-108. doi: 10.1016/j.engstruct.2015.04.022

53. O’Hegarty, R.; West, R.; Reilly, A.; and Kinnane, O., “Composite Behaviour of Fibre-Reinforced Concrete Sandwich Panels with FRP Shear Connectors,” Engineering Structures, V. 198, 2019, p. 109475. doi: 10.1016/j.engstruct.2019.109475

54. Colombo, I. G.; Colombo, M.; Di Prisco, M.; and Pouyaei, F., “Analytical and Mumerical Prediction of the Bending Behaviour of Textile Reinforced Concrete Sandwich Beams,” Journal of Building Engineering, V. 17, 2018, pp. 183-195. doi: 10.1016/j.jobe.2018.02.012

55. Chira, A.; Kumar, A.; Vlach, T.; Laiblová, L.; and Hajek, P., “Textile-Reinforced Concrete Facade Panels with Rigid Foam Core Prisms,” The Journal of Sandwich Structures & Materials, V. 18, No. 2, 2016, pp. 200-214. doi: 10.1177/1099636215613488

56. Flansbjer, M.; Portal, N. W.; Vennetti, D.; and Mueller, U., “Composite Behaviour of Textile Reinforced Reactive Powder Concrete Sandwich Façade Elements,” International Journal of Concrete Structures and Materials, V. 12, No. 1, 2018, pp. 1-7. doi: 10.1186/s40069-018-0301-4

57. Choi, K. B.; Choi, W. C.; Feo, L.; Jang, S.-J.; and Yun, H.-D., “In-Plane Shear Behavior of Insulated Precast Concrete Sandwich Panels Reinforced with Corrugated GFRP Shear Connectors,” Composites. Part B, Engineering, V. 79, 2015, pp. 419-429. doi: 10.1016/j.compositesb.2015.04.056

58. Jiang, H.; Guo, Z.; Liu, J.; and Liu, H., “The Shear Behavior of Precast Concrete Sandwich Panels with W-Shaped SGFRP Shear Connectors,” KSCE Journal of Civil Engineering, V. 22, No. 10, 2018, pp. 3961-3971. doi: 10.1007/s12205-018-0809-9

59. Kabir, M. Z. “Structural Performance of 3-D Sandwich Panels Under Shear and Flexural Loading,” Scientia Iranica, V. 12, No. 4, 2005, pp. 402-408.

60. Hodicky, K.; Sopal, G.; Rizkalla, S.; Hulin, T.; and Stang, H., “Experimental and Numerical Investigation of the FRP Shear Mechanism for Concrete Sandwich Panels,” Journal of Composites for Construction, ASCE, V. 19, No. 5, 2015, p. 04014083. doi: 10.1061/(ASCE)CC.1943-5614.0000554

61. O’Hegarty, R.; Reilly, A.; West, R.; and Kinnane, O., “Thermal Investigation of Thin Precast Concrete Sandwich Panels,” Journal of Building Engineering, V. 27, 2020, p. 100937. doi: 10.1016/j.jobe.2019.100937

62. Ilomets, S.; Kuusk, K.; Paap, L.; Arumägi, E.; and Kalamees, T., “Impact of Linear Thermal Bridges on Thermal Transmittance of Renovated Apartment Buildings,” Journal of Civil Engineering and Management, V. 23, No. 1, 2016, pp. 96-104. doi: 10.3846/13923730.2014.976259

63. Djamai, Z. I.; Erroussafi, K.; Si Larbi, A.; Salvatore, F.; and Cai, G., “Analytical Modeling of Textile Reinforced Concrete (TRC) Sandwich Panels: Consideration of Nonlinear Behavior and Failure Modes,” Mechanics of Advanced Materials and Structures, V. 14, 2020, pp. 1-20.

64. Vervloet, J.; Tysmans, T.; El Kadi, M.; De Munck, M.; Kapsalis, P.; Van Itterbeeck, P.; Wastiels, J.; and Van Hemelrijck, D., “Validation of a Numerical Bending Model for Sandwich Beams with Textile-Reinforced Cement Faces by Means of Digital Image Correlation,” Applied Sciences, V. 9, No. 6, 2019, p. 1253. doi: 10.3390/app9061253

65. De Munck, M.; Tysmans, T.; Wastiels, J.; Kapsalis, P.; Vervloet, J.; El Kadi, M.; and Remy, O., “Fatigue Behaviour of Textile Reinforced Cementitious Composites and Their Application in Sandwich Elements,” Applied Sciences, V. 9, No. 7, 2019, p. 1293. doi: 10.3390/app9071293

66. Vervloet, J.; Van Itterbeeck, P.; Verbruggen, S.; El Kadi, M.; De Munck, M.; Wastiels, J.; and Tysmans, T., “Experimental Investigation of the Buckling Behaviour of Textile Reinforced Cement Sandwich Panels with Varying Face Thickness Using Digital Image Correlation,” Construction and Building Materials, V. 194, 2019, pp. 24-31. doi: 10.1016/j.conbuildmat.2018.11.0151

67. Gopinath, S.; Gopal, R.; and Lavanya, E., “Bending Properties of Textile Reinforced Concrete Sandwich Beams with Gypsum and Calcium Silicate Core,” The Journal of Sandwich Structures & Materials, V. 23, No. 8, 2021.

68. Hegger, J.; Kulas, C.; and Horstmann, M., “Spatial Textile Reinforcement Structures for Ventilated and Sandwich Façade Elements,” Advances in Structural Engineering, V. 15, No. 4, 2012, pp. 665-675. doi: 10.1260/1369-4332.15.4.665

69. Ganesan, S.; Othuman Mydin, M. A.; Mohd Yunos, M. Y.; and Mohd Nawi, M. N., “Thermal Properties of Foamed Concrete with Various Densities and Additives at Ambient Temperature,” Applied Mechanics and Materials, V. 747, 2015, pp. 230-233. doi: 10.4028/www.scientific.net/AMM.747.230


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer