Title:
Size Effect on Stress-Strain Model of Carbon Fiber- Reinforced Polymer Transverse Steel Reinforcement- Confined Concrete
Author(s):
Yun Tian, Jikai Zhou, Fengtong Bi, and Xiyao Zhao
Publication:
Structural Journal
Volume:
119
Issue:
4
Appears on pages(s):
85-95
Keywords:
carbon fiber-reinforced polymer; reinforced concrete cylinders; size effect; stress-strain model; transverse steel reinforcement
DOI:
10.14359/51734654
Date:
7/1/2022
Abstract:
The stress-strain relationship of concrete with carbon fiber-reinforced polymer (CFRP) and transverse steel reinforcement (TSR) is characterized by size effect. Uniaxial compression tests of CFRP-TSR-confined reinforced concrete cylinders in different sizes under different confinements were carried out. It was found that the stress-strain relationship of CFRP-TSR-confined reinforced concrete has a noticeable size effect and constraint effect. The deformation capacity of confined concrete improves with the increase of constraint. When the specimen size is small, ductility improvement is more evident due to the constraint effect. The confining effect of CFRP and TSR cannot be linearly superimposed, and the interaction must be considered to reflect the enhanced development of the combined constraint. A stress-strain model of CFRP-TSR-confined reinforced concrete considering size effect is proposed. It has been proven to be applicable for single CFRP or TSR-confined conditions and verified by existing literature data.
Related References:
1. Lam, L., and Teng, J. G., “Design-Oriented Stress-Strain Model For FRP-Confined Concrete,” Construction and Building Materials, V. 17, No. 6-7, 2003, pp. 471-489. doi: 10.1016/S0950-0618(03)00045-X
2. Teng, J. G.; Jiang, T.; Lam, L.; and Luo, Y. Z., “Refinement of Lam and Teng’s Design-Oriented Stress-Strain Model For FRP-Confined Concrete,” IABSE Symposium Report, V. 92, No. 1, 2011, pp. 68-75.
3. Jiang, T., and Teng, J. G., “Analysis-Oriented Stress-Strain Models For FRP-Confined Concrete,” Engineering Structures, V. 29, No. 11, 2007, pp. 2968-2986. doi: 10.1016/j.engstruct.2007.01.010
4. Harries, K. A.; Peck, A. J.; and Abraham, E. J., “Enhancing Stability of Structural Steel Sections Using FRP,” Thin-Walled Structures, V. 47, No. 10, 2009, pp. 1092-1101. doi: 10.1016/j.tws.2008.10.007
5. Thériault, M.; Neale, K. W.; and Claude, S., “Fiber-Reinforced Polymer-Confined Circular Concrete Columns: Investigation of Size and Slenderness Effects,” Journal of Composites for Construction, ASCE, V. 8, No. 4, 2004, pp. 323-331. doi: 10.1061/(ASCE)1090-0268(2004)8:4(323)
6. Matthys, S.; Toutanji, H.; Audenaert, K.; and Taerwe, L., “Axial Load Behavior of Large-Scale Columns Confined with Fiber-Reinforced Polymer Composites,” ACI Structural Journal, V. 102, No. 2, Mar.-Apr. 2005, pp. 258-267.
7. Carey, S. A., and Harries, K. A., “Axial Behavior and Modeling of Confined Small-, Medium-, and Large-Scale Circular Sections with Carbon Fiber-Reinforced Polymer Jackets,” ACI Structural Journal, V. 102, No. 4, July-Aug. 2005, pp. 596-604.
8. Yeh, F. Y., and Chang, K. C., “Confinement Efficiency and Size Effect of FRP Confined Circular Concrete Columns,” Structural Engineering and Mechanics, V. 26, No. 2, 2007, pp. 127-150. doi: 10.12989/sem.2007.26.2.127
9. Akogbe, R. K.; Liang, M.; and Wu, Z. M., “Size Effect of Uniaxial Compressive Strength of CFRP Confined Concrete Cylinders,” International Journal of Concrete Structures and Materials, V. 5, No. 1, 2011, pp. 49-55. doi: 10.4334/IJCSM.2011.5.1.049
10. Liang, M.; Wu, Z. M.; Ueda, T.; Zheng, J. J.; and Akogbe, R., “Experiment and Modeling on Uniaxial Behavior of Carbon Fiber Reinforced Polymer Confined Concrete Cylinders with Different Sizes,” Journal of Reinforced Plastics and Composites, V. 31, No. 6, 2012, pp. 389-403. doi: 10.1177/0731684412439347
11. Wang, Y. F., and Wu, H. L., “Size Effect of Concrete Short Columns Confined with Aramid FRP Jackets,” Journal of Composites for Construction, ASCE, V. 15, No. 4, 2011, pp. 535-544. doi: 10.1061/(ASCE)CC.1943-5614.0000178
12. Zhou, J. K.; Bi, F. T.; Wang, Z. Q.; and Zhang, J., “Experimental Investigation of Size Effect on Mechanical Properties of Carbon Fiber Reinforced Polymer (CFRP) Confined Concrete Circular Specimens,” Construction and Building Materials, V. 127, 2016, pp. 643-652. doi: 10.1016/j.conbuildmat.2016.10.039
13. Park, R.; Priestley, M. J. N.; and Gill, W. D., “Ductility of Square-Confined Concrete Columns,” Journal of the Structural Division, ASCE, V. 108, No. 4, 1982, pp. 929-950. doi: 10.1061/JSDEAG.0005933
14. Légeron, F., and Paultre, P., “Uniaxial Confinement Model for Normal- and High-Strength Concrete Columns,” Journal of Structural Engineering, ASCE, V. 129, No. 2, 2003, pp. 241-252. doi: 10.1061/(ASCE)0733-9445(2003)129:2(241)
15. Jin, L.; Li, P.; Du, X. L.; and Fan, L. L., “Size Effect on Nominal Strength of Circular Stirrup-Confined RC Columns Under Uniaxial Compression: Mesoscale Study,” Journal of Structural Engineering, ASCE, V. 146, No. 3, 2020, p. 04019213. doi: 10.1061/(ASCE)ST.1943-541X.0002516
16. Jin, L.; Li, P.; and Du, X. L., “Compressive Stress-Strain Model for Stirrup-Confined Concrete Columns Considering the Effect of Structural Size,” Journal of Civil and Environmental Engineering, V. 42, No. 1, 2020, pp. 81-89. (in Chinese)
17. Wang, Z.; Wang, D.; Smith, S. T.; and Lu, D., “CFRP-Confined Square RC Columns. II: Cyclic Uniaxial Compression Stress-Strain Model,” Journal of Composites for Construction, ASCE, V. 16, No. 2, 2012, pp. 161-170. doi: 10.1061/(ASCE)CC.1943-5614.0000246
18. Chastre, C., and Silva, M. A. G., “Monotonic Uniaxial Behavior and Modelling of RC Circular Columns Confined with CFRP,” Engineering Structures, V. 32, No. 8, 2010, pp. 2268-2277. doi: 10.1016/j.engstruct.2010.04.001
19. Lee, J. Y.; Yi, C. K.; Jeong, H. S.; Kim, S. W.; and Kim, J. K., “Compressive Response of Concrete Confined with Steel Spirals and FRP Composites,” Journal of Composite Materials, V. 44, No. 4, 2010, pp. 481-504. doi: 10.1177/0021998309347568
20. Hu, H., and Seracino, R., “Analytical Model for FRP-and-Steel-Confined Circular Concrete Columns in Compression,” Journal of Composites for Construction, ASCE, V. 18, No. 3, 2014, pp. 1-7. doi: 10.1061/(ASCE)CC.1943-5614.0000394
21. Shirmohammadi, F.; Esmaeily, A.; and Kiaeipour, Z., “Stress-Strain Model for Circular Concrete Columns Confined by FRP and Conventional Lateral Steel,” Engineering Structures, V. 84, 2015, pp. 395-405. doi: 10.1016/j.engstruct.2014.12.005
22. Eid, R., and Paultre, P., “Plasticity-Based Model for Circular Concrete Columns Confined with Fibre-Composite Sheets,” Engineering Structures, V. 29, No. 12, 2007, pp. 3301-3311. doi: 10.1016/j.engstruct.2007.09.005
23. Eid, R., and Paultre, P., “Analytical Model for FRP-Confined Circular Reinforced Concrete Columns,” Journal of Composites for Construction, ASCE, V. 12, No. 5, 2008, pp. 541-552. doi: 10.1061/(ASCE)1090-0268(2008)12:5(541)
24. Harajli, M. H.; Hantouche, E.; and Soudki, K., “Stress-Strain Model for Fiber-Reinforced Polymer Jacketed Concrete Columns,” ACI Structural Journal, V. 103, No. 5, Sept.-Oct. 2006, pp. 672-682.
25. Ilki, A.; Peker, O.; Karamuk, E.; Demir, C.; and Kumbasar, N., “FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns,” Journal of Materials in Civil Engineering, ASCE, V. 20, No. 2, 2008, pp. 169-188. doi: 10.1061/(ASCE)0899-1561(2008)20:2(169)
26. Pellegrino, C., and Modena, C., “Analytical Model for FRP Confinement of Concrete Columns with and without Internal Steel Reinforcement,” Journal of Composites for Construction, ASCE, V. 14, No. 6, 2010, pp. 693-705. doi: 10.1061/(ASCE)CC.1943-5614.0000127
27. Rousakis, T. C., and Tourtouras, I. S., “Modeling of Passive and Active External Confinement of RC Columns with Elastic Material,” Journal of Applied Mathematics and Mechanics, V. 95, No. 10, 2015, pp. 1046-1057.
28. Eid, R., and Paultre, P., “Compressive Behavior of FRP-Confined Reinforced Concrete Columns,” Engineering Structures, V. 132, No. 1, 2017, pp. 518-530. doi: 10.1016/j.engstruct.2016.11.052
29. Zhou, J. K.; Tian, Y.; Bi, F. T.; and Zhao, X. Y., “Size Effect on Strength of Reinforced Concrete Cylinders Confined by Carbon Fiber-Reinforced Polymer and Transverse Stirrup Reinforcement,” ACI Structural Journal, V. 118, No. 2, Mar. 2021, pp. 263-272.
30. Harajli, M. H., “Axial Stress–Strain Relationship for FRP Confined Circular and Rectangular Concrete Columns,” Cement and Concrete Composites, V. 28, No. 10, 2006, pp. 938-948. doi: 10.1016/j.cemconcomp.2006.07.005
31. EN 1992-1-1, “Eurocode 2: Design of Concrete Structures—Part 1–1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2004.
32. Xiao, Y., and Wu, H., “Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets,” Journal of Materials in Civil Engineering, ASCE, V. 12, No. 2, 2000, pp. 139-146. doi: 10.1061/(ASCE)0899-1561(2000)12:2(139)
33. Shahawy, M.; Mirmiran, A.; and Beitelman, T., “Tests and Modeling of Carbon-Wrapped Concrete Columns,” Composites. Part B, Engineering, V. 31, No. 6-7, 2000, pp. 471-480. doi: 10.1016/S1359-8368(00)00021-4
34. Benzaid, R.; Mesbah, H.; and Chikh, E. N., “FRP-Confined Concrete Cylinders: Uniaxial Compression Experiments and Strength Model,” Journal of Reinforced Plastics and Composites, V. 29, No. 16, 2010, pp. 2469-2488. doi: 10.1177/0731684409355199
35. Yin, P.; Huang, L.; Yan, L.; and Zhu, D., “Compressive Behavior of Concrete Confined by CFRP and Transverse Spiral Reinforcement. Part A: Experimental Study,” Materials and Structures/Materiaux et Constructions, V. 49, No. 3, 2016, pp. 1001-1011.
36. Eid, R.; Roy, N.; and Paultre, P., “Normal- and High-Strength Concrete Circular Elements Wrapped with FRP Composites,” Journal of Composites for Construction, ASCE, V. 13, No. 2, 2009, pp. 113-124. doi: 10.1061/(ASCE)1090-0268(2009)13:2(113)
37. Demers, M., and Neale, K. W., “Confinement of Reinforced Concrete Columns with Fibre-Reinforced Composite Sheets - An Experimental Study,” Canadian Journal of Civil Engineering, V. 26, No. 2, 1999, pp. 226-241. doi: 10.1139/l98-067
38. Du, M.; Jin, L.; Du, X.; and Li, D., “Size Effect Tests of Stocky Reinforced Concrete Columns Confined by Stirrups,” Structural Concrete, V. 18, No. 3, 2017, pp. 454-465. doi: 10.1002/suco.201600074
39. Chang, W.; Hao, M.; and Zheng, W. Z., “Compressive Behavior of UHPC Confined by Both Spiral Stirrups and Carbon Fiber-Reinforced Polymer (CFRP),” Construction and Building Materials, V. 230, 2020, p. 117007. doi: 10.1016/j.conbuildmat.2019.