Cement Paste Modified by Nano-Montmorillonite and Carbon Nanotubes

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Cement Paste Modified by Nano-Montmorillonite and Carbon Nanotubes

Author(s): Mohammad Ali Mousavi, Aref Sadeghi-Nik, Ali Bahari, Ashraf Ashour, and Kamal H. Khayat

Publication: Materials Journal

Volume: 119

Issue: 3

Appears on pages(s): 173-185

Keywords: central composite design (CCD); multi-walled carbon nanotubes (MWCNTs); nano-montmorillonite (NM); response surface methodology (RSM); sodium dodecylbenzene sulfonate (SDBS); strength

DOI: 10.14359/51734612

Date: 5/1/2022

Abstract:
This paper investigates the coupled effect of functionalized multi-walled carbon nanotubes (MWCNTs-COOH), nanomontmorillonite (NM), and sodium dodecylbenzene sulfonate (SDBS) anionic surfactant on compressive and flexural strengths of cement paste. The response surface methodology (RSM) was used to optimize the content of the two nanomaterials and surfactant, and to analyze the effect of their interactions on the mechanical properties and microstructural characteristics of the paste. Test results indicate that the simultaneous use of NM and MWCNTs can lead to a 30% gain in compressive strength and a 40% increase in flexural strength. Using analysis of variance (ANOVA), it was possible to predict the optimal weight percentage of nanomaterials. Atomic force microscope observations showed that the use of NM and MWCNT can reduce the surface roughness of cement paste and refine porosity, thus reducing the risk of cracking at the cement matrix and improving the homogeneity of the microstructure.

Related References:

1. Siddique, R.; De Schutter, G.; and Noumowe, A., “Effect of Used-Foundry Sand on the Mechanical Properties of Concrete,” Construction and Building Materials, V. 23, No. 2, Feb. 2009, pp. 976-980. doi: 10.1016/j.conbuildmat.2008.05.005

2. Chen, J.; Liang, C.; Li, B.; Wang, E.; Li, G.; and Hou, X., “The Effect of Nano-γAl2O3 Additive on Early Hydration of Calcium Aluminate Cement,” Construction and Building Materials, V. 158, Jan. 2018, pp. 755-760. doi: 10.1016/j.conbuildmat.2017.10.071

3. Bahari, A.; Sadeghi Nik, A.; Roodbari, M.; Mirshafiei, E.; and Amiri, B., “Effect of Silicon Carbide Nano Dispersion on the Mechanical and Nano Structural Properties of Cement,” National Academy Science Letters, V. 38, No. 4, Aug. 2015, pp. 361-364. doi: 10.1007/s40009-014-0316-6

4. Cerro-Prada, E.; García-Salgado, S.; Ángeles Quijano, M.; and Varela, F., “Controlled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites,” Nanomaterials (Basel), V. 9, No. 1, Jan. 2019, Article No. 26. doi: 10.3390/nano9010026

5. Zhang, R.; Cheng, X.; Hou, P.; and Ye, Z., “Influences of Nano-TiO2 on the Properties of Cement-Based Materials: Hydration and Drying Shrinkage,” Construction and Building Materials, V. 81, Apr. 2015, pp. 35-41. doi: 10.1016/j.conbuildmat.2015.02.003

6. Li, W.; Li, X.; Chen, S. J.; Long, G.; Liu, Y. M.; and Duan, W. H., “Effects of Nanoalumina and Graphene Oxide on Early-Age Hydration and Mechanical Properties of Cement Paste,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 9, Sept. 2017, p. 04017087. doi: 10.1061/(ASCE)MT.1943-5533.0001926

7. Mousavi, M. A.; Sadeghi-Nik, A.; Bahari, A.; Jin, C.; Ahmed, R.; Ozbakkaloglu, T.; and de Brito, J., “Strength Optimization of Cementitious Composites Reinforced by Carbon Nanotubes and Titania Nanoparticles,” Construction and Building Materials, V. 303, Oct. 2021, Article No. 124510. doi: 10.1016/j.conbuildmat.2021.124510

8. Dehghan Hamedan, A., and Shahmiri, M., “A New Model for the Solidification of Metal Matrix Nanocomposites: Wet Cluster Engulfment of Nanoparticles by the Solidification Front,” Journal of Composite Materials, V. 51, No. 20, Aug. 2017, pp. 2913-2932. doi: 10.1177/0021998317701557

9. Bahari, A.; Sadeghi-Nik, A.; Shaikh, F. U. A.; Sadeghi-Nik, A.; Cerro-Prada, E.; Mirshafiei, E.; and Roodbari, M., “Experimental Studies on Rheological, Mechanical, and Microstructure Properties of Self-Compacting Concrete Containing Perovskite Nanomaterial,” Structural Concrete, V. 23, No. 1, Feb. 2022, pp. 564-578. doi: 10.1002/suco.202000548

10. Bahari, A.; Sadeghi-Nik, A.; Cerro-Prada, E.; Sadeghi-Nik, A.; Roodbari, M.; and Zhuge, Y., “One-Step Random-Walk Process of Nanoparticles in Cement-Based Materials,” Journal of Central South University, V. 28, No. 6, June 2021, pp. 1679-1691.

11. Sadeghi-Nik, A.; Berenjian, J.; Bahari, A.; Safaei, A. S.; and Dehestani, M., “Modification of Microstructure and Mechanical Properties of Cement by Nanoparticles through a Sustainable Development Approach,” Construction and Building Materials, V. 155, Nov. 2017, pp. 880-891. doi: 10.1016/j.conbuildmat.2017.08.107

12. Chang, T.-P.; Shih, J.-Y.; Yang, K.-M.; and Hsiao, T.-C., “Material Properties of Portland Cement Paste with Nano-Montmorillonite,” Journal of Materials Science, V. 42, No. 17, Sept. 2007, pp. 7478-7487. doi: 10.1007/s10853-006-1462-0

13. Kuo, W.-Y.; Huang, J.-S.; and Lin, C.-H., “Effects of Organo-Modified Montmorillonite on Strengths and Permeability of Cement Mortars,” Cement and Concrete Research, V. 36, No. 5, May 2006, pp. 886-895. doi: 10.1016/j.cemconres.2005.11.013

14. Parveen, S.; Rana, S.; Fangueiro, R.; and Paiva, M. C., “Microstructure and Mechanical Properties of Carbon Nanotube Reinforced Cementitious Composites Developed Using a Novel Dispersion Technique,” Cement and Concrete Research, V. 73, July 2015, pp. 215-227. doi: 10.1016/j.cemconres.2015.03.006

15. Fraga, J. L.; del Campo, J. M.; and García, J. Á., “Carbon Nanotube-Cement Composites in the Construction Industry: 1952-2014. A State-of-the-Art Review,” Second International Conference on Emerging Trends in Engineering and Technology (ICETET’2014), London, UK, May 2014, pp. 137-144.

16. Konsta-Gdoutos, M. S.; Metaxa, Z. S.; and Shah, S. P., “Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials,” Cement and Concrete Research, V. 40, No. 7, July 2010, pp. 1052-1059. doi: 10.1016/j.cemconres.2010.02.015

17. Konsta-Gdoutos, M. S.; Danoglidis, P. A.; Falara, M. G.; and Nitodas, S. F., “Fresh and Mechanical Properties, and Strain Sensing of Nanomodified Cement Mortars: The Effects of MWCNT Aspect Ratio, Density and Functionalization,” Cement and Concrete Composites, V. 82, Sept. 2017, pp. 137-151. doi: 10.1016/j.cemconcomp.2017.05.004

18. Abu Al-Rub, R. K.; Ashour, A. I.; and Tyson, B. M., “On the Aspect Ratio Effect of Multi-Walled Carbon Nanotube Reinforcements on the Mechanical Properties of Cementitious Nanocomposites,” Construction and Building Materials, V. 35, Oct. 2012, pp. 647-655. doi: 10.1016/j.conbuildmat.2012.04.086

19. Kumar, S.; Kolay, P.; Malla, S.; and Mishra, S., “Effect of Multiwalled Carbon Nanotubes on Mechanical Strength of Cement Paste,” Journal of Materials in Civil Engineering, ASCE, V. 24, No. 1, Jan. 2012, pp. 84-91. doi: 10.1061/(ASCE)MT.1943-5533.0000350

20. Hu, Y.; Luo, D.; Li, P.; Li, Q.; and Sun, G., “Fracture Toughness Enhancement of Cement Paste with Multi-Walled Carbon Nanotubes,” Construction and Building Materials, V. 70, Nov. 2014, pp. 332-338. doi: 10.1016/j.conbuildmat.2014.07.077

21. Ghaharpour, F.; Bahari, A.; Abbasi, M.; and Ashkarran, A. A., “Parametric Investigation of CNT Deposition on Cement by CVD Process,” Construction and Building Materials, V. 113, June 2016, pp. 523-535. doi: 10.1016/j.conbuildmat.2016.03.080

22. Siddique, R., and Mehta, A., “Effect of Carbon Nanotubes on Properties of Cement Mortars,” Construction and Building Materials, V. 50, Jan. 2014, pp. 116-129. doi: 10.1016/j.conbuildmat.2013.09.019

23. Han, B.; Sun, S.; Ding, S.; Zhang, L.; Yu, X.; and Ou, J., “Review of Nanocarbon-Engineered Multifunctional Cementitious Composites,” Composites Part A: Applied Science and Manufacturing, V. 70, Mar. 2015, pp. 69-81. doi: 10.1016/j.compositesa.2014.12.002

24. Han, B.; Yu, X.; Kwon, E.; and Ou, J., “Effects of CNT Concentration Level and Water/Cement Ratio on the Piezoresistivity of CNT/Cement Composites,” Journal of Composite Materials, V. 46, No. 1, Jan. 2012, pp. 19-25. doi: 10.1177/0021998311401114

25. Han, B.; Zhang, K.; Yu, X.; Kwon, E.; and Ou, J., “Electrical Characteristics and Pressure-Sensitive Response Measurements of Carboxyl MWNT/Cement Composites,” Cement and Concrete Composites, V. 34, No. 6, July 2012, pp. 794-800. doi: 10.1016/j.cemconcomp.2012.02.012

26. Xu, J.; Feng, W.; Jiang, L.; Xu, Y.; Song, Y.; Cao, Y.; and Tan, Q., “Influence of Surfactants on Chloride Binding in Cement Paste,” Construction and Building Materials, V. 125, Oct. 2016, pp. 369-374. doi: 10.1016/j.conbuildmat.2016.08.075

27. Atahan, H. N.; Carlos, C. Jr.; Chae, S.; Monteiro, P. J. M.; and Bastacky, J., “The Morphology of Entrained Air Voids in Hardened Cement Paste Generated with Different Anionic Surfactants,” Cement and Concrete Composites, V. 30, No. 7, Aug. 2008, pp. 566-575. doi: 10.1016/j.cemconcomp.2008.02.003

28. Montgomery, D. C., Design and Analysis of Experiments, John Wiley & Sons, Inc., Hoboken, NJ, 2017.

29. Upasani, R. S., and Banga, A. K., “Response Surface Methodology to Investigate the Iontophoretic Delivery of Tacrine Hydrochloride,” Pharmaceutical Research, V. 21, No. 12, Dec. 2004, pp. 2293-2299. doi: 10.1007/s11095-004-7682-6

30. Khayat, K. H.; Ghezal, A.; and Hadriche, M. S., “Utility of Statistical Models in Proportioning Self-Consolidating Concrete,” Materials and Structures, V. 33, No. 5, June 2000, pp. 338-344. doi: 10.1007/BF02479705

31. Nunes, S.; Milheiro-Oliveira, P.; Coutinho, J. S.; and Figueiras, J., “Robust SCC Mixes through Mix Design,” Journal of Materials in Civil Engineering, ASCE, V. 25, No. 2, Feb. 2013, pp. 183-193. doi: 10.1061/(ASCE)MT.1943-5533.0000592

32. Abjameh, R.; Moradi, O.; and Amani, J., “The Study of Synthesis and Functionalized Single-Walled Carbon Nanotubes with Amide Group,” International Nano Letters, V. 4, No. 2, June 2014, Article No. 97. doi: 10.1007/s40089-014-0097-4

33. Calabria-Holley, J.; Papatzani, S.; Naden, B.; Mitchels, J.; and Paine, K., “Tailored Montmorillonite Nanoparticles and Their Behaviour in the Alkaline Cement Environment,” Applied Clay Science, V. 143, July 2017, pp. 67-75. doi: 10.1016/j.clay.2017.03.005

34. Mousavi, M. A., and Bahari, A., “Influence of Functionalized MWCNT on Microstructure and Mechanical Properties of Cement Paste,” Sādhanā, V. 44, No. 5, May 2019, Article No. 103. doi: 10.1007/s12046-019-1087-z

35. Kafi, M. A.; Sadeghi-Nik, A.; Bahari, A.; Sadeghi-Nik, A.; and Mirshafiei, E., “Microstructural Characterization and Mechanical Properties of Cementitious Mortar Containing Montmorillonite Nanoparticles,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 12, Dec. 2016, p. 04016155. doi: 10.1061/(ASCE)MT.1943-5533.0001671

36. Bradley, N., “The Response Surface Methodology,” Doctoral dissertation, Indiana University South Bend, South Bend, IN, 2007, 84 pp.

37. Dean, A.; Voss, D.; and Draguljić, D., Design and Analysis of Experiments, V. 1, Springer, New York, 1999, 742 pp.

38. Hutter, J. L., and Bechhoefer, J., “Calibration of Atomic‐Force Microscope Tips,” Review of Scientific Instruments, V. 64, No. 7, July 1993, pp. 1868-1873. doi: 10.1063/1.1143970

39. Van Kampen, N. G., Stochastic Processes in Physics and Chemistry, third edition, Elsevier, the Netherlands, 2007, 480 pp.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer