Title:
Optimization of Curing Parameters of Class C Fly-Ash-Based Alkali-Activated Mortar
Author(s):
Simon Sargon, Eslam Gomaa, Ahmed A. Gheni, and Mohamed A. ElGawady
Publication:
Materials Journal
Volume:
119
Issue:
3
Appears on pages(s):
53-66
Keywords:
alkali-activated mortar (AAM); Class C fly ashes; compressive strength; curing duration; curing temperature; microstructural analysis; response surface methodology (RSM)
DOI:
10.14359/51734608
Date:
5/1/2022
Abstract:
The optimum curing temperatures and durations for alkali-activated mortar (AAM) synthesized using five different types of Class C fly ash (FAs) were investigated. The calcium content of the FAs ranged from 21 to 37%. For each FA, three AAM mixtures having different Alk/FA and SS/SH were prepared. Different curing temperatures ranging from 40 to 85°C (104 to 185°F) and curing durations ranging from 4 to 48 hours were investigated. Furthermore, two curing regimes having a constant ambient temperature of 30°C (86°F) and a variable ambient temperature were investigated for a curing duration of 7 days. The compressive strength of each mixture, after being subjected to the different curing regimes, was determined. A statistical model was developed, using the response surface methodology (RSM) approach, to predict the compressive strength of the mixtures. The results showed that AAM mixtures synthesized using FAs that had a relatively high calcium content displayed their highest compressive strengths at a combination of longer curing durations of 48 hours and low curing temperatures of 40 to 55°C (104 to 131°F), while a short curing duration of 16 to 24 hours and high temperatures of 70 to 85°C (158 to 185°F) were preferred for mixtures with relatively low-calcium FAs. The consumed curing energy for each mixture was also measured and correlated to the achieved compressive strength. In addition, different microstructural analysis tests were used to explain the results.
Related References:
1. Li, C.; Sun, H.; and Li, L., “A Review: The Comparison between Alkali-Activated Slag (Si+Ca) and Metakaolin (Si+Al) Cements,” Cement and Concrete Research, V. 40, No. 9, 2010, pp. 1341-1349. doi: 10.1016/j.cemconres.2010.03.020
2. Gomaa, E.; Sargon, S.; Kashosi, C.; Gheni, A.; and ElGawady, M. A., “Mechanical Properties of High Early Strength Class C Fly Ash-Based Alkali Activated Concrete,” Transportation Research Record: Journal of the Transportation Research Board, V. 2674, No. 5, 2020, pp. 430-443. doi: 10.1177/0361198120915892
3. Han, T.; Gomaa, E.; Gheni, A.; Huang, J.; ElGawady, M.; and Kumar, A., “Machine Learning Enabled Closed-Form Models to Predict Strength of Alkali-Activated Systems,” Journal of the American Ceramic Society, V. 105, No. 6, 2022, pp. 4414-4425. doi: 10.1111/jace.18399
4. Gomaa, E.; Gheni, A. A.; Kashosi, C.; and ElGawady, M. A., “Bond Strength of Eco-Friendly Class C Fly Ash-Based Thermally Cured Alkali-Activated Concrete to Portland Cement Concrete,” Journal of Cleaner Production, V. 235, 2019, pp. 404-416. doi: 10.1016/j.jclepro.2019.06.268
5. ASTM C618-19, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2019, 5 pp.
6. Hassan, A.; Arif, M.; and Shariq, M., “Use of Geopolymer Concrete for a Cleaner and Sustainable Environment – A Review of Mechanical Properties and Microstructure,” Journal of Cleaner Production, V. 223, 2019, pp. 704-728. doi: 10.1016/j.jclepro.2019.03.051
7. Pacheco-Torgal, F.; Abdollahnejad, Z.; Camões, A. F.; Jamshidi, M.; and Ding, Y., “Durability of Alkali-Activated Binders: A Clear Advantage Over Portland Cement or an Unproven Issue?” Construction and Building Materials, V. 30, 2012, pp. 400-405. doi: 10.1016/j.conbuildmat.2011.12.017
8. Mohamed, O. A., “A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete,” Materials (Basel), V. 12, No. 8, 2019, Article No. 1198. doi: 10.3390/ma12081198
9. Bakharev, T., “Geopolymeric Materials Prepared Using Class F Fly Ash and Elevated Temperature Curing,” Cement and Concrete Research, V. 35, No. 6, 2005, pp. 1224-1232. doi: 10.1016/j.cemconres.2004.06.031
10. Jiang, W., and Roy, D., “Hydrothermal Processing of New Fly Ash Cement,” American Ceramic Society Bulletin, V. 71, No. 4, 1992.
11. Yacob, N. S.; ElGawady, M. A.; Sneed, L. H.; and Said, A., “Shear Strength of Fly Ash-Based Geopolymer Reinforced Concrete Beams,” Engineering Structures, V. 196, 2019, Article No. 109298. doi: 10.1016/j.engstruct.2019.109298
12. Davidovits, J., Geopolymer Chemistry and Applications, Geopolymer Institute, Saint-Quentin, France, 2015.
13. Provis, J. L., “Alkali-Activated Materials,” Cement and Concrete Research, V. 114, 2018, pp. 40-48. doi: 10.1016/j.cemconres.2017.02.009
14. Gökçe, H. S.; Tuyan, M.; and Nehdi, M. L., “Alkali-Activated and Geopolymer Materials Developed Using Innovative Manufacturing Techniques: A Critical Review,” Construction and Building Materials, V. 303, 2021, Article No. 124483. doi: 10.1016/j.conbuildmat.2021.124483
15. Abudawaba, F.; Gomaa, E.; Gheni, A.; and ElGawady, M., “Developing Mix Proportions for Class C Fly Ash-Based Alkali-Activated 3D-Printed Concrete Mixtures,” Transportation Research Record: Journal of the Transportation Research Board, V. 2676, No. 2, 2021, pp. 197-212. doi: 10.1177/03611981211039167
16. Chindaprasirt, P.; Chareerat, T.; and Sirivivatnanon, V., “Workability and Strength of Coarse High Calcium Fly Ash Geopolymer,” Cement and Concrete Composites, V. 29, No. 3, 2007, pp. 224-229. doi: 10.1016/j.cemconcomp.2006.11.002
17. Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; and Chindaprasirt, P., “NaOH-Activated Ground Fly Ash Geopolymer Cured at Ambient Temperature,” Fuel, V. 90, No. 6, 2011, pp. 2118-2124. doi: 10.1016/j.fuel.2011.01.018
18. Gomaa, E. Y.; Gheni, A. A.; and ElGawady, M. A., “Durability of Class C Fly Ash-Based Alkali Activated Concrete,” Sustainable Concrete with Beneficial Byproducts, SP-334, M. L. Nehdi, ed., American Concrete Institute, Farmington Hills, MI, 2019, pp. 185-204.
19. Wang, S.-D.; Pu, X.-C.; Scrivener, K. L.; and Pratt, P. L., “Alkali-Activated Slag Cement and Concrete: A Review of Properties and Problems,” Advances in Cement Research, V. 7, No. 27, 1995, pp. 93-102. doi: 10.1680/adcr.1995.7.27.93
20. Gomaa, E.; Gheni, A.; and ElGawady, M. A., “Repair of Ordinary Portland Cement Concrete Using Ambient-Cured Alkali-Activated Concrete: Interfacial Behavior,” Cement and Concrete Research, V. 129, 2020, Article No. 105968. doi: 10.1016/j.cemconres.2019.105968
21. Hardjito, D.; Wallah, S. E.; Sumajouw, D. M. J.; and Rangan, B. V., “On the Development of Fly Ash-Based Geopolymer Concrete,” ACI Materials Journal, V. 101, No. 6, Nov.-Dec. 2004, pp. 467-472.
22. Sindhunata; van Deventer, J. S. J.; Lukey, G. C.; and Xu, H., “Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based Geopolymerization,” Industrial & Engineering Chemistry Research, V. 45, No. 10, 2006, pp. 3559-3568. doi: 10.1021/ie051251p
23. Görhan, G., and Kürklü, G., “The Influence of the NaOH Solution on the Properties of the Fly Ash-Based Geopolymer Mortar Cured at Different Temperatures,” Composites Part B: Engineering, V. 58, 2014, pp. 371-377. doi: 10.1016/j.compositesb.2013.10.082
24. Atiş, C. D.; Görür, E. B.; Karahan, O.; Bilim, C.; İlkentapar, S.; and Luga, E., “Very High Strength (120 MPa) Class F Fly Ash Geopolymer Mortar Activated at Different NaOH Amount, Heat Curing Temperature and Heat Curing Duration,” Construction and Building Materials, V. 96, 2015, pp. 673-678. doi: 10.1016/j.conbuildmat.2015.08.089
25. Swanepoel, J. C., and Strydom, C. A., “Utilisation of Fly Ash in a Geopolymeric Material,” Applied Geochemistry, V. 17, No. 8, 2002, pp. 1143-1148. doi: 10.1016/S0883-2927(02)00005-7
26. van Jaarsveld, J. G. S.; van Deventer, J. S. J.; and Lukey, G. C., “The Effect of Composition and Temperature on the Properties of Fly Ash- and Kaolinite-Based Geopolymers,” Chemical Engineering Journal, V. 89, No. 1, 2002, pp. 63-73. doi: 10.1016/S1385-8947(02)00025-6
27. ASTM C33/C33M-16, “Standard Specification for Concrete Aggregates,” ASTM International, West Conshohocken, PA, 2016, 11 pp.
28. ASTM C128-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” ASTM International, West Conshohocken, PA, 2015, 6 pp.
29. ASTM C109/C109M-16, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2016, 10 pp.
30. Guo, X.; Shi, H.; and Dick, W. A., “Compressive Strength and Microstructural Characteristics of Class C Fly Ash Geopolymer,” Cement and Concrete Composites, V. 32, No. 2, 2010, pp. 142-147. doi: 10.1016/j.cemconcomp.2009.11.003
31. Gomaa, E.; Sargon, S.; Kashosi, C.; and ElGawady, M., “Fresh Properties and Compressive Strength Of High Calcium Alkali Activated Fly Ash Mortar,” Journal of King Saud University - Engineering Sciences, V. 29, No. 4, 2017, pp. 356-364.
32. Gomaa, E.; Han, T.; ElGawady, M.; Huang, J.; and Kumar, A., “Machine Learning to Predict Properties of Fresh and Hardened Alkali-Activated Concrete,” Cement and Concrete Composites, V. 115, 2021, Article No. 103863. doi: 10.1016/j.cemconcomp.2020.103863
33. Aydın, S., “A Ternary Optimisation of Mineral Additives of Alkali Activated Cement Mortars,” Construction and Building Materials, V. 43, 2013, pp. 131-138. doi: 10.1016/j.conbuildmat.2013.02.005
34. Aziminezhad, M.; Mahdikhani, M.; and Memarpour, M. M., “RSM-Based Modeling and Optimization of Self-Consolidating Mortar to Predict Acceptable Ranges of Rheological Properties,” Construction and Building Materials, V. 189, 2018, pp. 1200-1213. doi: 10.1016/j.conbuildmat.2018.09.019
35. Yip, C. K.; Lukey, G. C.; Provis, J. L.; and van Deventer, J. S. J., “Effect of Calcium Silicate Sources on Geopolymerisation,” Cement and Concrete Research, V. 38, No. 4, 2008, pp. 554-564. doi: 10.1016/j.cemconres.2007.11.001
36. van Deventer, J. S. J.; Provis, J. L.; Duxson, P.; and Lukey, G. C., “Reaction Mechanisms in the Geopolymeric Conversion of Inorganic Waste to Useful Products,” Journal of Hazardous Materials, V. 139, No. 3, 2007, pp. 506-513. doi: 10.1016/j.jhazmat.2006.02.044
37. Panias, D.; Giannopoulou, I. P.; and Perraki, T., “Effect of Synthesis Parameters on the Mechanical Properties of Fly Ash-Based Geopolymers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 301, No. 1-3, 2007, pp. 246-254. doi: 10.1016/j.colsurfa.2006.12.064
38. Cho, H.; Felmy, A. R.; Craciun, R.; Keenum, J. P.; Shah, N.; and Dixon, D. A., “Solution State Structure Determination of Silicate Oligomers by 29Si NMR Spectroscopy and Molecular Modeling,” Journal of the American Chemical Society, V. 128, No. 7, 2006, pp. 2324-2335. doi: 10.1021/ja0559202
39. Diaz, E. I.; Allouche, E. N.; and Eklund, S., “Factors Affecting the Suitability of Fly Ash as Source Material for Geopolymers,” Fuel, V. 89, No. 5, 2010, pp. 992-996. doi: 10.1016/j.fuel.2009.09.012
40. van Jaarsveld, J. G. S.; van Deventer, J. S. J.; and Lukey, G. C., “The Characterisation of Source Materials in Fly Ash-Based Geopolymers,” Materials Letters, V. 57, No. 7, 2003, pp. 1272-1280. doi: 10.1016/S0167-577X(02)00971-0
41. Lee, N. K., and Lee, H. K., “Reactivity and Reaction Products of Alkali-Activated, Fly Ash/Slag Paste,” Construction and Building Materials, V. 81, 2015, pp. 303-312. doi: 10.1016/j.conbuildmat.2015.02.022
42. Clayden, N. J.; Esposito, S.; Aronne, A.; and Pernice, P., “Solid State 27Al NMR and FTIR Study of Lanthanum Aluminosilicate Glasses,” Journal of Non-Crystalline Solids, V. 258, No. 1-3, 1999, pp. 11-19. doi: 10.1016/S0022-3093(99)00555-4
43. García Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A.; and Macphee, D. E., “Effect on Fresh C-S-H Gels of the Simultaneous Addition of Alkali and Aluminium,” Cement and Concrete Research, V. 40, No. 1, 2010, pp. 27-32. doi: 10.1016/j.cemconres.2009.08.004
44. El-Didamony, H.; Amer, A. A.; El-Sokkary, T. M.; and Abd-El-Aziz, H., “Effect of Substitution of Granulated Slag by Air-Cooled Slag on the Properties of Alkali Activated Slag,” Ceramics International, V. 39, No. 1, 2013, pp. 171-181. doi: 10.1016/j.ceramint.2012.06.007
45. Lecomte, I.; Henrist, C.; Liégeois, M.; Maseri, F.; Rulmont, A.; and Cloots, R., “(Micro)-Structural Comparison between Geopolymers, Alkali-Activated Slag Cement and Portland Cement,” Journal of the European Ceramic Society, V. 26, No. 16, 2006, pp. 3789-3797. doi: 10.1016/j.jeurceramsoc.2005.12.021
46. Yu, P.; Kirkpatrick, R. J.; Poe, B.; McMillan, P. F.; and Cong, X., “Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy,” Journal of the American Ceramic Society, V. 82, No. 3, 1999, pp. 742-748. doi: 10.1111/j.1151-2916.1999.tb01826.x
47. García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M. T.; and Palomo, A., “FTIR Study of the Sol–Gel Synthesis of Cementitious Gels: C–S–H and N–A–S–H,” Journal of Sol-Gel Science and Technology, V. 45, No. 1, 2008, pp. 63-72. doi: 10.1007/s10971-007-1643-6
48. Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, T.; and MacKenzie, K. J. D., “Utilization of Radioactive High-Calcium Mongolian Fly Ash for the Preparation of Alkali-Activated Geopolymers for Safe Use as Construction Materials,” Ceramics International, V. 40, No. 10, Part B, 2014, pp. 16475-16483. doi: 10.1016/j.ceramint.2014.0