Title:
Numerical and Experimental Surface Inductive Method for Steel Fibers
Author(s):
C. V. Voigt, R. Pieralisi, M. J. C. Bonfim, S. H. P. Cavalaro, and R. A. Medeiros-Junior
Publication:
Materials Journal
Volume:
119
Issue:
2
Appears on pages(s):
269-279
Keywords:
nondestructive testing; numerical simulation; steel fibers; surface inductive
DOI:
10.14359/51734402
Date:
3/1/2022
Abstract:
The characterization of fiber content in construction materials is predominantly done through destructive tests, restraining the assessment of the preferential orientation of the fibers. Inductive methods can be a nondestructive alternative to characterize these materials. This paper shows the numerical and experimental development of an inductive test capable of determining steel fiber content and preferential orientation in thin slab elements based exclusively on surface measurements. The variables in this study were the fiber content (30 and 60 kg/m3), the size of the thin slab elements, and the measurement position of the developed equipment. The results showed the capacity of the method to determine the concentration and the preferred orientation of the fibers using a portable, small, and low-cost equipment. Inductance measurements were higher in the thin slab elements with 60 kg/m3 of fibers, allowing better identification of the preferential orientation of the fibers.
Related References:
1. BS EN 14721, “Test Method for Metallic Fibre Concrete - Measuring the Fibre Content in Fresh and Hardened Concrete (+A1 2007),” British Standards Institution, London, UK, 2005, 10 pp.
2. Nunes, S.; Pimentel, M.; and Carvalho, A., “Non-Destructive Assessment of Fibre Content and Orientation in UHPFRC Layers Based on a Magnetic Method,” Cement and Concrete Composites, V. 72, 2016, pp. 66-79. doi: 10.1016/j.cemconcomp.2016.05.024
3. Zhang, S.; Zhang, C.; and Liao, L., “Investigation on the Relationship between the Steel Fibre Distribution and the Post-Cracking Behaviour of SFRC,” Construction and Building Materials, V. 200, 2019, pp. 539-550. doi: 10.1016/j.conbuildmat.2018.12.081
4. Shen, X., and Brühwiler, E., “Influence of Local Fiber Distribution on Tensile Behavior of Strain Hardening UHPFRC Using NDT and DIC,” Cement and Concrete Research, V. 132, Article ID 106042, 2020. doi: 10.1016/j.cemconres.2020.106042
5. Zaki, R. A.; AbdelAleem, B. H.; Hassan, A. A. A.; and Colbourne, B., “Abrasion Resistance of Fiber-Reinforced Concrete under Cold Temperatures,” ACI Materials Journal, V. 117, No. 5, Sept. 2020, pp. 221-232. doi: 10.14359/51725784
6. Garcia, S.; Pereira, A.; and Pierott, R., “Shear Strength of Sand-Lightweight Concrete Deep Beams with Steel Fibers,” ACI Structural Journal, V. 118, No. 2, Mar. 2021, pp. 203-214. doi: 10.14359/51729347
7. Mishurova, T.; Rachmatulin, N.; Fontana, P.; Oesch, T.; Bruno, G.; Radi, E.; and Sevostianov, I., “Evaluation of the Probability Density of Inhomogeneous Fiber Orientations by Computed Tomography and Its Application to the Calculation of the Effective Properties of a Fiber-Reinforced Composite,” International Journal of Engineering Science, V. 122, 2018, pp. 14-29. doi: 10.1016/j.ijengsci.2017.10.002
8. Hedjazi, S., and Castillo, D., “Evaluation of Elastic Properties of Fiber-Reinforced Concrete Using Fundamental Resonance Frequencies,” ACI Materials Journal, V. 118, No. 3, May 2021, pp. 29-39. doi: 10.14359/51730420
9. Lencioni, J. W., and Medeiros-Junior, R. A., “Analysis of Different Parameters in the Electrical Resistivity Test of Concrete,” International Journal of Civil Engineering, V. 19, No. 1, 2021, pp. 27-38. doi: 10.1007/s40999-020-00559-8
10. Bernard, E. S., “Influence of Fiber Geometry and Type on Creep Rupture of Cracked Fiber-Reinforced Shotcrete Mixtures,” ACI Materials Journal, V. 118, No. 2, Mar. 2021, pp. 3-12. doi: 10.14359/51730410
11. Melara, E. K.; Mendes, A. Z.; Andreczevecz, N. C.; Braganca, M. O. G. P.; Carrera, G. T.; and Medeiros-Junior, R. A., “Monitoring by Electrochemical Impedance Spectroscopy of Mortars Subjected to Ingress and Extraction of Chloride Ions,” Construction and Building Materials, V. 242, 2020, p. 118001. doi: 10.1016/j.conbuildmat.2020.118001
12. Camara, L. A.; Wons, M.; Esteves, I. C. A.; and Medeiros-Junior, R. A., “Monitoring the Self-Healing of Concrete from the Ultrasonic Pulse Velocity,” Journal of Composites Science, V. 3, No. 1, 2019, pp. 16-25. doi: 10.3390/jcs3010016
13. Faifer, M.; Ferrara, L.; Ottoboni, R.; and Toscani, S., “Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview,” Sensors (Basel), V. 13, No. 1, 2013, pp. 1300-1318. doi: 10.3390/s130101300
14. Torrents, J. M.; Blanco, A.; Pujadas, P.; Aguado, A.; Juan-García, P.; and Sánchez-Moragues, M. A., “Inductive Method for Assessing the Amount and Orientation of Steel Fibers in Concrete,” Materials and Structures, V. 45, No. 10, 2012, pp. 1577-1592. doi: 10.1617/s11527-012-9858-6
15. Faifer, M.; Ottoboni, R.; Toscani, S.; and Ferrara, L., “Nondestructive Testing of Steel-Fiber-Reinforced Concrete Using a Magnetic Approach,” Proceedings of IEEE Transactions on Instrumentation and Measurement, V. 60, No. 5, 2011, pp. 1709-1717. doi: 10.1109/TIM.2010.2090059
16. Ferrara, L.; Faifer, M.; and Toscani, S., “A Magnetic Method for Non Destructive Monitoring of Fiber Dispersion and Orientation in Steel Fiber Reinforced Cementitious Composites—Part 1: Method Calibration,” Materials and Structures, V. 45, No. 4, 2012, pp. 575-589. doi: 10.1617/s11527-011-9793-y
17. Cavalaro, S. H. P.; López-Carreño, R.; Torrents, J. M.; Aguado, A.; and Juan-García, P., “Assessment Of Fibre Content and 3D Profile in Cylindrical SFRC Specimens,” Materials and Structures, V. 49, No. 1-2, 2016, pp. 577-595. doi: 10.1617/s11527-014-0521-2
18. Alberti, M. G.; Enfedaque, A.; and Gálvez, J. C., “A Review on the Assessment and Prediction of the Orientation and Distribution of Fibres for Concrete,” Composites. Part B, Engineering, V. 151, 2018, pp. 274-290. doi: 10.1016/j.compositesb.2018.05.040
19. Ferrández, D.; Saiz, P.; Morón, C.; Dorado, M. G.; and Morón, A., “Inductive Method for the Orientation of Steel Fibers in Recycled Mortars,” Construction and Building Materials, V. 222, 2019, pp. 243-253. doi: 10.1016/j.conbuildmat.2019.06.113
20. Zhang, S.; Zhang, C.; Liao, L.; Wang, C.; Zhao, R. “Investigation Into the Effect of Fibre Distribution on the Post-Cracking Tensile Strength of SFRC through Physical Experimentation and Numerical Simulation,” Construction and Building Materials, V. 248, Article ID 118433, 2020. doi: 10.1016/j.conbuildmat.2020.118433
21. Baltzis, K. B., “The Finite Element Method Magnetic (FEMM) Freeware Package: May It Serve as an Educational Tool in Teaching Electromagnetics?” Education and Information Technologies, V. 15, No. 1, 2010, pp. 19-36. doi: 10.1007/s10639-008-9082-8
22. Faifer, M.; Ottoboni, R.; Toscani, S.; and Ferrara, L., “An Improved Method for Steel Fiber Reinforced Concrete Analysis,” Proceedings of IEEE International Instrumentation and Measurement Technology Conference, Graz, Austria, 2012, pp. 1896-1901. doi: 10.1109/I2MTC.2012.6229182
23. Cavalaro, S. H. P.; López-Carreño, R.; Torrents, J. M.; Aguado, A.; and Juan-García, P., “Improved Assessment of Fibre Content and Orientation with Inductive Method in SFRC,” Materials and Structures, V. 48, No. 6, 2015, pp. 1859-1873. doi: 10.1617/s11527-014-027