Title:
Effect of Metakaolin on Water Resistance of Magnesium Oxychloride Cement
Author(s):
Wei Gong, Nan Wang, and Na Zhang
Publication:
Materials Journal
Volume:
119
Issue:
1
Appears on pages(s):
47-57
Keywords:
compactness; hydration heat; magnesium oxychloride cement (MOC); metakaolin; microstructure; modeling; phase composition; setting time; water resistance
DOI:
10.14359/51734254
Date:
1/1/2022
Abstract:
In this paper, the effects of metakaolin (MK) on the properties of magnesium oxychloride cement (MOC) such as setting time, hydration process, mechanical properties, compactness, phase composition, and microstructure were investigated by using macroscopic or microscopic testing techniques. It was revealed that the addition of MK decreased the setting time, accelerated the hydration process, and improved the water resistance of MOC. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and scanning electron microscopy (SEM) results showed that MK did not change the phase composition of MOC before and after water immersion but promoted the formation of 5Mg(OH)2·MgCl2·8H2O (phase 5) before water immersion and inhibited the decomposition of phase 5 after water immersion. Based on the strength retention and relative dynamic elastic modulus, a comprehensive model with which to evaluate water resistance of MOC was proposed. This model could normalize multiple parameters and reduce the test error. For MOC, the optimal amount of MK was 20%.
Related References:
1. Sorel, S., “On a New Magnesium Cement,” Comptes Rendus de l’Acadébaimie des Sciences, V. 65, 1867, pp. 102-104.
2. Guo, Y. Y.; Zhang, Y. X.; Soe, K.; and Pulham, M., “Recent Development in Magnesium Oxychloride Cement,” Structural Concrete, V. 19, No. 5, 2018, pp. 1290-1300. doi: 10.1002/suco.201800077
3. Li, G. Z.; Yu, Y. Z.; Li, J. Q.; Wang, Y. Z.; and Liu, H. S., “Experimental Study on Urban Refuse/Magnesium Oxychloride Cement Compound Floor Tile,” Cement and Concrete Research, V. 33, No. 10, 2003, pp. 1663-1668. doi: 10.1016/S0008-8846(03)00136-4
4. Henau, P. D., and Dupas, M., “Study of the Alternation in Acropolis Monuments,” Proceedings of Second International Symposium on the Deterioration of Building Stone, Athens, Greece, 1976.
5. Montle, J. F., and Mayhan, K. G., “The Role of Magnesium Oxychloride as a Fire-Resistive Material,” Fire Technology, V. 10, No. 3, 1974, pp. 201-210. doi: 10.1007/BF02588845
6. Ji, Y. S., “Study of the New Type of Light Magnesium Cement Foamed Material,” Materials Letters, V. 50, No. 1, 2001, pp. 28-31. doi: 10.1016/S0167-577X(00)00407-9
7. Luo, X. R.; Fan, W. Q.; Li, C. Q.; Wang, Y.; Yang, H. J.; Liu, X. L.; and Yang, S. M., “Effect of Hydroxyacetic Acid on the Water Resistance of Magnesium Oxychloride Cement,” Construction and Building Materials, V. 246, 2020, p. 118428. doi: 10.1016/j.conbuildmat.2020.118428
8. Deng, D., “The Mechanism for Soluble Phosphates to Improve the Water Resistance of Magnesium Oxychloride Cement,” Cement and Concrete Research, V. 33, No. 9, 2003, pp. 1311-1317. doi: 10.1016/S0008-8846(03)00043-7
9. Li, J.; Li, G.; and Yu, Y., “The Influence of Compound Additive on Magnesium Oxychloride Cement/Urban Refuse Floor Tile,” Construction and Building Materials, V. 22, No. 4, 2008, pp. 521-525. doi: 10.1016/j.conbuildmat.2006.11.010
10. Chau, C.; Chan, J.; and Li, Z., “Influences of Fly Ash on Magnesium Oxychloride Mortar,” Cement and Concrete Composites, V. 31, No. 4, 2009, pp. 250-254. doi: 10.1016/j.cemconcomp.2009.02.011
11. Gong, W.; Wang, N.; Zhang, N.; Han, W. L.; and Qiao, H. X., “Water Resistance and a Comprehensive Evaluation Model of Magnesium Oxychloride Cement Concrete based on Taguchi and Entropy Weight Method,” Construction and Building Materials, V. 260, 2020, p. 119817. doi: 10.1016/j.conbuildmat.2020.119817
12. Li, C. D., and Yu, H. F., “Influence of Fly Ash and Silica Fume on Water-resistant Property of Magnesium Oxychloride Cement,” Journal of Wuhan University of Technology-Materials Science Edition, V. 25, No. 4, 2010, pp. 721-724. doi: 10.1007/s11595-010-0079-y
13. He, P. P.; Poon, C. S.; and Tsang, D. C. W., “Comparison of Glass Powder and Pulverized Fuel Ash for Improving the Water Resistance of Magnesium Oxychloride Cement,” Cement and Concrete Composites, V. 86, 2018, pp. 98-109. doi: 10.1016/j.cemconcomp.2017.11.010
14. He, P. P.; Poon, C. S.; and Tsang, D. C. W., “Using Incinerated Sewage Sludge Ash to Improve the Water Resistance of Magnesium Oxychloride Cement (MOC),” Construction and Building Materials, V. 147, 2017, pp. 519-524. doi: 10.1016/j.conbuildmat.2017.04.187
15. Li, Y.; Li, Z. J.; Pei, H. F.; and Yu, H. F., “The Influence of FeSO4 and KH2PO4 on the Performance of Magnesium Oxychloride Cement,” Construction and Building Materials, V. 102, 2016, pp. 233-238. doi: 10.1016/j.conbuildmat.2015.10.186
16. Chen, X. Y.; Zhang, T. T.; Bi, W. L.; and Cheeseman, C., “Effect of Tartaric Acid and Phosphoric Acid on the Water Resistance of Magnesium Oxychloride (MOC) Cement,” Construction and Building Materials, V. 213, 2019, pp. 528-536. doi: 10.1016/j.conbuildmat.2019.04.086
17. Nunes, C., and Slížková, Z., “Hydrophobic Lime Based Mortars with Linseed Oil: Characterization and Durability Assessment,” Cement and Concrete Research, V. 61-62, 2014, pp. 28-39. doi: 10.1016/j.cemconres.2014.03.011
18. Duan, P.; Yan, C. J.; Luo, W. J.; and Zhou, W., “A Novel Surface Waterproof Geopolymer Derived from Metakaolin by Hydrophobic Modification,” Materials Letters, V. 164, 2016, pp. 172-175. doi: 10.1016/j.matlet.2015.11.006
19. Amer, A. A., and El-Hoseny, S., “Properties and Performance of Metakaolin Pozzolanic Cement Pastes,” Journal of Thermal Analysis and Calorimetry, V. 129, No. 1, 2017, pp. 33-44. doi: 10.1007/s10973-017-6087-9
20. Wang, Y.; Shui, Z.; Huang, Y.; Sun, T.; Yu, R.; and Wang, G., “Improving the Pozzolanic Activity of Metakaolin by Urea Intercalation Technique,” Construction and Building Materials, V. 172, 2018, pp. 19-28. doi: 10.1016/j.conbuildmat.2018.03.189
21. Cyr, M.; Trinh, M.; Husson, B.; and Casaux-Ginestet, G., “Effect of Cement Type on Metakaolin Efficiency,” Cement and Concrete Research, V. 64, 2014, pp. 63-72. doi: 10.1016/j.cemconres.2014.06.007
22. Yi, G.; Ma, C.; Long, G. C.; Zhao, B.; and Xie, Y. J., “Effects of Metakaolin on a Novel Aerated Magnesium Phosphate Cement with High Early Strength,” Construction and Building Materials, V. 187, 2018, pp. 1130-1133. doi: 10.1016/j.conbuildmat.2018.08.037
23. Shi, Y.; Chen, B.; and Ahmad, M. R., “Effects of Alumina as an Effective Constituent of Metakaolin on Properties of Magnesium Phosphate Cements,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 8, 2019, p. 04019147. doi: 10.1061/(ASCE)MT.1943-5533.0002779
24. Lu, X., and Chen, B., “Experimental Study of Magnesium Phosphate Cements Modified by Metakaolin,” Construction and Building Materials, V. 123, 2016, pp. 719-726. doi: 10.1016/j.conbuildmat.2016.07.092
25. Lv, L. M.; Huang, P.; Mo, L. W.; Deng, M.; Qian, J. S.; and Wang, A. G., “Properties of Magnesium Potassium Phosphate Cement Pastes Exposed to Water Curing: A Comparison Study on the Influences of Fly Ash and Metakaolin,” Construction and Building Materials, V. 203, 2019, pp. 589-600. doi: 10.1016/j.conbuildmat.2019.01.134
26. Qin, Z. H.; Ma, C.; Zheng, Z. Q.; Long, G. C.; and Chen, B., “Effects of Metakaolin on Properties and Microstructure of Magnesium Phosphate Cement,” Construction and Building Materials, V. 234, 2020, p. 117353. doi: 10.1016/j.conbuildmat.2019.117353
27. GB/T50080-2016, “Standard for Test Method of Performance on Ordinary Fresh Concrete,” Standards Press of China, Beijing, China, 2016.
28. GB/T 12959-2008, “Test Methods for Heat of Cement Hydration,” Standards Press of China, Beijing, China, 2008.
29. GB/T 17671-1999, “Method of Testing Cements-determination of Strength,” Standards Press of China, Beijing, China, 1999.
30. Ahmad, S., “Reinforcement Corrosion in Concrete Structures, its Monitoring and Service Life Prediction–a Review,” Cement and Concrete Composites, V. 25, No. 4-5, 2003, pp. 459-471. doi: 10.1016/S0958-9465(02)00086-0
31. Xiao, Q. H.; Li, Q.; Cao, Z. Y.; and Tian, W. Y., “The Deterioration Law of Recycled Concrete Under the Combined Effects of Freeze-Thaw and Sulfate Attack,” Construction and Building Materials, V. 200, 2019, pp. 344-355. doi: 10.1016/j.conbuildmat.2018.12.066
32. Wen, J.; Yu, H.F.; Li Y.; Wu C.Y.; Dong J.M.; and Zheng L.N., “Citric Acid on Hydration Process and of Thermal Decomposed Magnesium Oxychloride Cement,” Journal of Wuhan University. of Technology-Materials Science Edition, V. 29, No. 1, 2014, pp. 114-118. doi: CNKI:SUN:WLGY.0.2014-01-023
33. Snelson, D. G.; Wild, S.; and O’Farrell, M., “Heat of Hydration of Portland Cement-Metakaolin-Fly Ash (PC-MK-PFA) Blends,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 832-840. doi: 10.1016/j.cemconres.2008.01.004
34. Rahhal,V.; and Talero, R., “Influence of Two Different Fly Ashes on the Hydration of Portland Cements,” Journal of Thermal Analysis and Calorimetry, V. 78, No. 1, 2005, pp. 191-205. doi: 10.1023/B: JTAN.0000042167.46181.17.10.1023/B
35. Liu, R. Q.; Pang, B.; Zhao, X. K.; and Yang, Y. Q., “Effect of Rice Husk Ash on Early Hydration Behavior of Magnesium Phosphate Cement,” Construction and Building Materials, V. 263, 2020, p. 120180. doi: 10.1016/j.conbuildmat.2020.120180
36. Wang, D. H.; Shi, C. J.; Farzadnia, N.; Shi, Z. G.; Ji, H. F.; and Ou, Z. H., “A Review on Use of Limestone Powder in Cement-based Materials: Mechanism, Hydration and Microstructures,” Construction and Building Materials, V. 181, 2018, pp. 659-672. doi: 10.1016/j.conbuildmat.2018.06.075
37. Chatterji, S., “Mechanism of Expansion of Concrete due to the Presence of Dead-Burnt CaO and MgO,” Cement and Concrete Research, V. 25, No. 1, 1995, pp. 51-56. doi: 10.1016/0008-8846(94)00111-B
38. Salomão, R., and Pandolfelli, V. C., “Citric Acid as Antihydration Additive for Magnesia Containing Refractory Castables,” Ceramics International, V. 37, No. 6, 2011, pp. 1839-1842. doi: 10.1016/j.ceramint.2011.03.050
39. Liu, F.; Zhao, S. Z.; Weng, M. C.; and Liu, Y. Q., “Fire Risk Assessment for Large-Scale Commercial Buildings Based on Structure Entropy Weight Method,��� Safety Science, V. 94, 2017, pp. 26-40. doi: 10.1016/j.ssci.2016.12.009
40. Wu, D. F.; Wang, N. L.; Yang, Z. P.; Li, C. Z.; and Yang, Y. P., “Comprehensive Evaluation of Coal-Fired Power Units Using Grey Relational Analysis and a Hybrid Entropy-based Weighting Method,” Entropy, V. 20, No. 4, 2018, p. 215. doi: 10.3390/e20040215
41. Huang, S. Z.; Ming, B.; Huang, Q.; Leng, G. Y.; and Hou, B. B., “A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method,” Water Resources Management, V. 31, No. 11, 2017, pp. 3667-3681. doi: 10.1007/s11269-017-1692-8
42. AQSIQ, “Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete (GB/T 50082-2009),” Beijing: Standards Press of China, 2009.
43. Wen, J.; Yu, H. F.; Li, Y.; and Dong, J. M., “Effect of Mineral Admixtures on Magnesium Oxychloride Cement Hydration Exothermic Chemical Properties,” Concrete (London), No. 12, 2011, pp. 49-52. doi: 10.3969/j.issn.1002-3550.2011.12.015
44. Qiao, H. X.; Gong, W.; Shi, Y. Y.; Wanjiru, M. E.; and Dong, J., “Experimental Study on Magnesium Oxychloride Cement Concrete,” Emerging Materials Research, V. 5, No. 2, 2016, pp. 248-255. doi: 10.1680/jemmr.16.00012
45. Dinger, D. R., and Funk, J. E., “Particle Size Analysis Routines Available on Cerabull,” American Ceramic Society Bulletin, V. 68, No. 8, 1989, pp. 1406-1408.
46. Andreasen, A. H. M., “Ueber die Beziehung Zwischen Kornabstufung Und Zwischenraum in Produkten Aus Losen Körnern (Mit Einigen Experimenten),” Kolloid-Zeitschrift, V. 50, No. 3, 1930, pp. 217-228. doi: 10.1007/BF01422986