Title:
Performance of One-Part Alkali-Activated Self- Consolidated Mortar
Author(s):
Dima M. Kanaan and Ahmed M. Soliman
Publication:
Materials Journal
Volume:
119
Issue:
2
Appears on pages(s):
181-195
Keywords:
alkali-activated; dry-powder; meta sodium silicate; minislump; one-part; self-consolidated; ternary
DOI:
10.14359/51734201
Date:
3/1/2022
Abstract:
The workability and mechanical performance of one-part alkali-activated self-consolidated mortar (AASCM) differ substantially from ordinary cementitious systems. However, it has scarcely been studied. This study examined the feasibility of producing “just add water” AASCM mixtures prepared by single, binary, and ternary precursor. Different tests, including the flowability and hydration heat, were evaluated to explore potential interactions between various ingredients. The hardened performance was evaluated based on achieved compressive strength at ages 7 and 28. Differential scanning calorimetry was used to evaluate various hydration products’ development over the investigated period. This study’s findings highlighted the high potential to produce green, easy-to-handle, one-part slag-based AASCM with fresh and hardened performance. Results showed that ternary mixtures exhibited higher flowability values than binary and single mixtures, except binary mixtures with fly ash. Furthermore, the modified particle size distribution of binary activated systems resulted in higher strength levels than single mixtures.
Related References:
1. Ling, G.; Shui, Z.; Sun, T.; Gao, X.; Wang, Y.; Sun, Y.; and Li, Z., “Rheological Behavior and Microstructure Characteristics of SCC Incorporating Metakaolin and Silica Fume,” Materials (Basel), V. 11, No. 12, 2018, p. 2576. doi: 10.3390/ma11122576
2. Khayat, K. H.; Ghezal, A.; and Hadriche, M. S., “Utility of Statistical Models in Proportioning Self-Consolidating Concrete,” Materials and Structures, V. 33, No. 5, 2000, pp. 338-344. doi: 10.1007/BF02479705
3. Vikan, H.; Justnes, H.; Winnefeld, F.; and Figi, R., “Correlating Cement Characteristics with Rheology of Paste,” Cement and Concrete Research, V. 37, No. 11, 2007, pp. 1502-1511. doi: 10.1016/j.cemconres.2007.08.011
4. Heikal, M.; Zohdy, K. M.; and Abdelkreem, M., “Mechanical, Microstructure and Rheological Characteristics of High Performance Self-Compacting Cement Pastes and Concrete Containing Ground Clay Bricks,” Construction and Building Materials, V. 38, Jan. 2013, pp. 101-109. doi: 10.1016/j.conbuildmat.2012.07.114
5. Shunsuke, H., and Kazuo, Y., “Interaction between Cement and Chemical Admixture from the Point of Cement Hydration, Absorption Behaviour of Admixture, and Paste Rheology,” Cement and Concrete Research, V. 29, No. 8, 1999, pp. 1159-1165. doi: 10.1016/S0008-8846(99)00004-6
6. Mehta, P. K., “Concrete Technology for Sustainable Development,” Concrete International, V. 21, No. 11, Nov. 1999, pp. 47-53.
7. Provis, J. L., and Van Deventer, J. S., eds., “Introduction to Geopolymers,” Geopolymers, Woodhead Publishing and CRC Press, Cambridge and Boca Raton, 2009, pp. 1-11.
8. Rowles, M. R.; Hanna, J. V.; Pike, K. J.; Smith, M. E.; and O’Connor, B. H., “29Si, 27Al, 1H and 23Na MAS NMR Study of the Bonding Character in Aluminosilicate Inorganic Polymers,” Applied Magnetic Resonance, V. 32, No. 4, 2007, pp. 663-689. doi: 10.1007/s00723-007-0043-y
9. Bernal, S. A.; Provis, J. L.; Fernández-Jiménez, A.; Krivenko, P. V.; Kavalerova, E.; Palacios, M.; and Shi, C., “Binder Chemistry–High-Calcium Alkali-Activated Materials,” Alkali Activated Materials, J. L. Provis and J. S. J. Van Deventer, eds., Springer, Dordrecht, the Netherlands, 2014, pp. 59-91.
10. Walkley, B.; San Nicolas, R.; Sani, M. A.; Rees, G. J.; Hanna, J. V.; van Deventer, J. S.; and Provis, J. L., “Phase Evolution of C-(N)-A-S-H/N-A-S-H Gel Blends Investigated via Alkali-Activation of Synthetic Calcium Aluminosilicate Precursors,” Cement and Concrete Research, V. 89, Nov. 2016, pp. 120-135. doi: 10.1016/j.cemconres.2016.08.010
11. Palacios, M., and Puertas, F., “Stability of Superplasticizer and Shrinkage-Reducing Admixtures Stability of Superplasticizer and Shrinkage-Reducing Admixtures in High Basic Media,” Materiales de Construcción, V. 54, No. 276, 2004, pp. 65-86.
12. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y. B., “Effect of Admixtures on Properties of Alkali-Activated Slag Concrete,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1367-1374. doi: 10.1016/S0008-8846(00)00349-5
13. Memon, F.; Nuruddin, F.; and Shafiq, N., “Compressive Strength and Workability Characteristics of Low-Calcium Fly Ash-Based Self-Compacting Geopolymer Concrete,” International Journal of Civil and Environmental Engineering, V. 5, No. 2, 2011, pp. 64-70.
14. Shafiq, I.; Azreen, M.; and Hussin, M., “Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste,” MATEC Web of Conferences—ETIC 2016, V. 97, Feb. 2017, pp. 1-7.
15. Ushaa, T.; Anuradha, R.; and Venkatasubramani, G., “Performance of Self-Compacting Geopolymer Concrete Containing Different Mineral Admixtures,” Indian Journal of Engineering and Materials Sciences, V. 22, No. 4, 2015, pp. 473-481.
16. Sashidhar, C.; Jawahar, J. G.; Neelima, C.; and Kumar, D. P., “Fresh and Strength Properties of Self Compacting Geopolymer Concrete Using Manufactured Sand,” International Journal of Chemtech Research, V. 7, No. 8, 2015, pp. 183-190.
17. Patel, Y. J., and Shah, N., “Study on Workability and Hardened Properties of Self Compacted Geopolymer Concrete Cured at Ambient Temperature,” Indian Journal of Science and Technology, V. 11, No. 1, 2018, pp. 1-12. doi: 10.17485/ijst/2018/v11i7/97742
18. Manjunath, R., and Narasimhan, M. C., “An Experimental Investigation on Self-Compacting Alkali Activated Slag Concrete Mixes,” Journal of Building Engineering, V. 17, May 2018, pp. 1-12. doi: 10.1016/j.jobe.2018.01.009
19. Van Deventer, J. S.; Provis, J. L.; and Duxson, P., “Technical and Commercial Progress in the Adoption of Geopolymer Cement,” Minerals Engineering, V. 29, Mar. 2012, pp. 89-104. doi: 10.1016/j.mineng.2011.09.009
20. Palomo, Á.; Fernández-Jiménez, A.; López-Hombrados, C.; and Lleyda, J. L., “Railway Sleepers Made of Alkali Activated Fly Ash Concrete,” Revista de Ingeniería de Construcción, V. 22, No. 2, 2011, pp. 75-80.
21. Neupane, K.; Kidd, P.; Chalmers, D.; Baweja, D.; and Shrestha, R., “Investigation on Compressive Strength Development and Drying Shrinkage of Ambient Cured Powder-Activated Geopolymer Concretes,” Australian Journal of Civil Engineering, V. 14, No. 1, 2016, pp. 72-83. doi: 10.1080/14488353.2016.1163765
22. Kovtun, M.; Kearsley, E. P.; and Shekhovtsova, J., “Dry Powder Alkali-Activated Slag Cements,” Advances in Cement Research, V. 27, No. 8, 2015, pp. 447-456. doi: 10.1680/jadcr.14.00078
23. Nematollahi, B.; Sanjayan, J.; and Shaikh, F. U., “Synthesis of Heat and Ambient Cured One-Part Geopolymer Mixes with Different Grades of Sodium Silicate,” Ceramics International, V. 41, No. 4, 2015, pp. 5696-5704. doi: 10.1016/j.ceramint.2014.12.154
24. Barhoum, A.; García-Betancourt, M. L.; Rahier, H.; and Van Assche, G., “Physicochemical Characterization of Nanomaterials: Polymorph, Composition, Wettability, and Thermal Stability,” Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends, A. Barhoum and A. S. H. Makhlouf, eds., Elsevier, Amsterdam, the Netherlands, 2018, pp. 255-278.
25. Kashani, A.; Provis, J. L.; Qiao, G. G.; and van Deventer, J. S., “The Interrelationship between Surface Chemistry and Rheology in Alkali Activated Slag Paste,” Construction and Building Materials, V. 65, Aug. 2014, pp. 583-591. doi: 10.1016/j.conbuildmat.2014.04.127
26. Talling, B., “Effect of Curing Conditions on Alkali-Activated Slags,” Fly Ash, Silica Fume, Slag, & Natural Pozzolans in Conc: Proc 3rd Intl Conf (Trondheim, Norway-1989), SP-114, V. M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, 1989, pp. 1485-1500.
27. Gifford, P. M., and Gillott, J. E., “Behaviour of Mortar and Concrete Made with Activated Blast Furnace Slag Cement,” Canadian Journal of Civil Engineering, V. 24, No. 2, 1997, pp. 237-249. doi: 10.1139/l96-099
28. Collins, F. G., and Sanjayan, J. G., “Workability and Mechanical Properties of Alkali Activated Slag Concrete,” Cement and Concrete Research, V. 29, No. 3, 1999, pp. 455-458. doi: 10.1016/S0008-8846(98)00236-1
29. Tanada, S.; Kabayama, M.; Kawasaki, N.; Sakiyama, T.; Nakamura, T.; Araki, M.; and Tamura, T., “Removal of Phosphate by Aluminum Oxide Hydroxide,” Journal of Colloid and Interface Science, V. 257, No. 1, 2003, pp. 135-140. doi: 10.1016/S0021-9797(02)00008-5
30. European Federation of National Associations Representing for Concrete, “Specification and Guidelines for Self-Compacting Concrete (EFNARC-2005),” EFNARC, Surrey, UK, 2005, 32 pp.
31. Yang, D.; Sun, W.; and Tan, Y., “Performance Evaluation of Binary Blends of Portland Cement and Fly Ash with Complex Admixture for Durable Concrete Structures,” Computers and Concrete, V. 2, No. 5, 2005, pp. 381-388. doi: 10.12989/cac.2005.2.5.381
32. Huanhai, Z.; Xuequan, W.; Zhongzi, X.; and Mingshu, T., “Kinetic Study on Hydration of Alkali-Activated Slag,” Cement and Concrete Research, V. 23, No. 6, 1993, pp. 1253-1258. doi: 10.1016/0008-8846(93)90062-E
33. Favier, A.; Habert, G.; de Lacaillerie, J. D. E.; and Roussel, N., “Mechanical Properties and Compositional Heterogeneities of Fresh Geopolymer Pastes,” Cement and Concrete Research, V. 48, June 2013, pp. 9-16. doi: 10.1016/j.cemconres.2013.02.001
34. Yuan, B., “Sodium Carbonate Activated Slag: Reaction Analysis, Microstructural Modification & Engineering Application,” doctoral dissertation, Technische Universiteit Eindhoven, Eindhoven, the Netherlands, 2017.
35. Faimon, J., “Oscillatory Silicon and Aluminum Aqueous Concentrations during Experimental Aluminosilicate Weathering,” Geochimica et Cosmochimica Acta, V. 60, No. 15, 1996, pp. 2901-2907. doi: 10.1016/0016-7037(96)00130-5
36. Shi, C.; Roy, D.; and Krivenko, P., Alkali-Activated Cements and Concretes, CRC Press, Boca Raton, FL, 2003, 392 pp.
37. Ouyang, X.; Ma, Y.; Liu, Z.; Liang, J.; and Ye, G., “Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag,” Minerals, V. 10, No. 1, 2020, 15 pp.
38. Shi, C., and Day, R. L., “A Calorimetric Study of Early Hydration of Alkali-Slag Cements,” Cement and Concrete Research, V. 25, No. 6, 1995, pp. 1333-1346. doi: 10.1016/0008-8846(95)00126-W
39. Wang, S. D.; Scrivener, K. L.; and Pratt, P. L., “Factors Affecting the Strength of Alkali-Activated Slag,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 1033-1043. doi: 10.1016/0008-8846(94)90026-4
40. Li, N.; Shi, C.; and Zhang, Z., “Understanding the Roles of Activators towards Setting and Hardening Control of Alkali-Activated Slag Cement,” Composites. Part B, Engineering, V. 171, Aug. 2019, pp. 34-45. doi: 10.1016/j.compositesb.2019.04.024
41. Bui, P. T.; Ogawa, Y.; and Kawai, K., “Long-Term Pozzolanic Reaction of Fly Ash in Hardened Cement-Based Paste Internally Activated by Natural Injection of Saturated Ca(OH)2 Solution,” Materials and Structures, V. 51, No. 6, 2018, pp. 1-14. doi: 10.1617/s11527-018-1274-0
42. Bin, Q.; Wu, X.; and Tang, M., “High Strength Alkali Steel-Iron Slag Binder,” Proceeding, Ninth International Congress on the Chemistry of Cement, V. 3, New Delhi, India, 1992, pp. 291-297.
43. Sun, Z., and Vollpracht, A., “Isothermal Calorimetry and In-Situ XRD Study of the NaOH Activated Fly Ash, Metakaolin and Slag,” Cement and Concrete Research, V. 103, Jan. 2018, pp. 110-122. doi: 10.1016/j.cemconres.2017.10.004
44. Krivenko, P. V., “Alkaline Cements,” Proceedings, First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, 1994, pp. 11-129.
45. Collins, F., and Sanjayan, J. G., “Effect of Pore Size Distribution on Drying Shrinking of Alkali-Activated Slag Concrete,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1401-1406. doi: 10.1016/S0008-8846(00)00327-6
46. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Hamdan, S.; and van Deventer, J. S., “Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag by the Incorporation of Fly Ash,” Cement and Concrete Composites, V. 45, Jan. 2014, pp. 125-135. doi: 10.1016/j.cemconcomp.2013.09.006
47. Long, W. J.; Ye, T. H.; Luo, Q. L.; Wang, Y.; and Mei, L., “Reinforcing Mechanism of Reduced Graphene Oxide on Flexural Strength of Geopolymers: A Synergetic Analysis of Hydration and Chemical Composition,” Nanomaterials, V. 9, No. 12, 2019, p. 1723.
48. Shi, C., and Li, Y., “Investigation on Some Factors Affecting the Characteristics of Alkali-Phosphorus Slag Cement,” Cement and Concrete Research, V. 19, No. 4, 1989, pp. 527-533. doi: 10.1016/0008-8846(89)90004-5
49. Deir, E.; Gebregziabiher, B. S.; and Peethamparan, S., “Influence of Starting Material on the Early Age Hydration Kinetics, Microstructure and Composition of Binding Gel in Alkali Activated Binder Systems,” Cement and Concrete Composites, V. 48, Apr. 2014, pp. 108-117. doi: 10.1016/j.cemconcomp.2013.11.010
50. Chithiraputhiran, S., and Neithalath, N., “Isothermal Reaction Kinetics and Temperature Dependence of Alkali Activation of Slag, Fly Ash and Their Blends,” Construction and Building Materials, V. 45, Aug. 2013, pp. 233-242. doi: 10.1016/j.conbuildmat.2013.03.061
51. Zhang, Z.; Provis, J. L.; Zou, J.; Reid, A.; and Wang, H., “Toward an Indexing Approach to Evaluate Fly Ashes for Geopolymer Manufacture,” Cement and Concrete Research, V. 85, July 2016, pp. 163-173. doi: 10.1016/j.cemconres.2016.04.007
52. Brough, A. R.; Holloway, M.; Sykes, J.; and Atkinson, A., “Sodium Silicate-Based Alkali-Activated Slag Mortars: Part II. The Retarding Effect of Additions of Sodium Chloride or Malic Acid,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1375-1379. doi: 10.1016/S0008-8846(00)00356-2
53. Criado, M.; Walkley, B.; Ke, X.; Provis, J. L.; and Bernal, S. A., “Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements,” Sustainability, V. 10, No. 12, 2018, p. 4709.
54. Royak, S. M.; P’yachev, V. A.; and Shkolnik, Y., “A Structure of Blast Furnace Slags and Activity,” Journal of Tsement, V. 8, 1978. (in Russian)
55. Teoreanu, I., “The Interaction Mechanism of Blast-Furnace Slags with Water. The Role of the Activating Agents,” IL Cemento, V. 8, No. 2, 1991, pp. 91-97.
56. Gebregziabiher, B. S.; Thomas, R.; and Peethamparan, S., “Very Early-Age Reaction Kinetics and Microstructural Development in Alkali-Activated Slag,” Cement and Concrete Composites, V. 55, Jan. 2015, pp. 91-102. doi: 10.1016/j.cemconcomp.2014.09.001
57. Zuo, Y.; Nedeljković, M.; and Ye, G., “Pore Solution Composition of Alkali-Activated Slag/Fly Ash Pastes,” Cement and Concrete Research, V. 115, Jan. 2019, pp. 230-250. doi: 10.1016/j.cemconres.2018.10.010
58. Gao, X.; Yu, Q. L.; and Brouwers, H. J. H., “Reaction Kinetics, Gel Character and Strength of Ambient Temperature Cured Alkali Activated Slag–Fly Ash Blends,” Construction and Building Materials, V. 80, Apr. 2015, pp. 105-115. doi: 10.1016/j.conbuildmat.2015.01.065
59. Qiu, J.; Zhao, Y.; Xing, J.; and Sun, X., “Fly Ash/Blast Furnace Slag-Based Geopolymer as a Potential Binder for Mine Backfilling: Effect of Binder Type and Activator Concentration,” Advances in Materials Science and Engineering, V. 2019, Mar. 2019, 12 pp.
60. Li, P.; Tang, J.; Chen, X.; Bai, Y.; and Li, Q., “Effect of Temperature and pH on Early Hydration Rate and Apparent Activation Energy of Alkali-Activated Slag,” Advances in Materials Science and Engineering, V. 2019, Feb. 2019, 13 pp.
61. Ionescu, D. V., “The Hydraulic Potential of High Iron Bearing Steel Slags,” doctoral dissertation, University of British Columbia, Vancouver, BC, Canada, 1999, 181 p.
62. Altan, E., and Erdoğan, S. T., “Alkali Activation of a Slag at Ambient and Elevated Temperatures,” Cement and Concrete Composites, V. 34, No. 2, 2012, pp. 131-139. doi: 10.1016/j.cemconcomp.2011.08.003
63. Roy, D. M., “Alkali-Activated Cements Opportunities and Challenges,” Cement and Concrete Research, V. 29, No. 2, 1999, pp. 249-254. doi: 10.1016/S0008-8846(98)00093-3
64. Bijen, J., “Benefits of Slag and Fly Ash,” Construction and Building Materials, V. 10, No. 5, 1996, pp. 309-314. doi: 10.1016/0950-0618(95)00014-3
65. Duxson, P. S. W. M.; Mallicoat, S. W.; Lukey, G. C.; Kriven, W. M.; and van Deventer, J. S., “The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-Based Geopolymers,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects, V. 292, No. 1, 2007, pp. 8-20. doi: 10.1016/j.colsurfa.2006.05.044
66. Djobo, J. N. Y.; Tchakoute, H. K.; Ranjbar, N.; Elimbi, A.; Tchadjie, L. N.; and Njopwouo, D., “Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions,” Journal of the American Ceramic Society, V. 99, No. 9, 2016, pp. 3159-3166. doi: 10.1111/jace.14332
68. Shi, D.; Ye, J.; and Zhang, W., “Effects of Activator Content on Properties, Mineralogy, Hydration and Microstructure of Alkali-Activated Materials Synthesized from Calcium Silicate Slag and Ground Granulated Blast Furnace Slag,” Journal of Building Engineering, V. 32, Nov. 2020, p. 101791. doi: 10.1016/j.jobe.2020.101791
69. Bernal, S. A.; Mejía de Gutierrez, R.; and Rodríguez, E. D., “Alkali-Activated Materials: Cementing a Sustainable Future,” Ingeniería y Competitividad, V. 15, No. 2, 2013, pp. 211-223.
70. Song, S., and Jennings, H. M., “Pore Solution Chemistry of Alkali-Activated Ground Granulated Blast-Furnace Slag,” Cement and Concrete Research, V. 29, No. 2, 1999, pp. 159-170. doi: 10.1016/S0008-8846(98)00212-9
71. Fernández-Jiménez, A.; Palomo, J. G.; and Puertas, F., “Alkali-Activated Slag Mortars: Mechanical Strength Behaviour,” Cement and Concrete Research, V. 29, No. 8, 1999, pp. 1313-1321. doi: 10.1016/S0008-8846(99)00154-4
72. Gruskovnjak, A.; Lothenbach, B.; Holzer, L.; Figi, R.; and Winnefeld, F., “Hydration of Alkali-Activated Slag: Comparison with Ordinary Portland Cement,” Advances in Cement Research, V. 18, No. 3, 2006, pp. 119-128. doi: 10.1680/adcr.2006.18.3.119
73. Weng, L., and Sagoe-Crentsil, K., “Dissolution Processes, Hydrolysis and Condensation Reactions during Geopolymer Synthesis: Part I—Low Si/Al Ratio Systems,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 2997-3006. doi: 10.1007/s10853-