Title:
Study of Alite-Calcium Sulfoaluminate Cement Produced from a High-Alumina Fly Ash
Author(s):
Tristana Y. Duvallet, Manuelle Paraschiv, Anne E. Oberlink, Robert B. Jewell, and Thomas L. Robl
Publication:
Materials Journal
Volume:
119
Issue:
1
Appears on pages(s):
263-273
Keywords:
alite-calcium sulfoaluminate; high-alumina fly ash; hydration process; mechanical properties
DOI:
10.14359/51734199
Date:
1/1/2022
Abstract:
The purpose of this research was to produce an alite-calcium sulfoaluminate (A/CSA) cement using high-alumina coal fly ash as raw material in replacement for bauxite. This ash is different from bauxite in terms of mineralogy and would represent a less expensive bauxite alternative in A/CSA clinkering. The hydration behavior, as well as the mechanical and physical properties including mechanical strength, carbonation, dimensional stability, and resistivity, were determined and compared to high-quality commercial ordinary portland cement (OPC) and CSA cements. The main conclusions include the successful production of A/CSA clinker from high-alumina fly ash, with high contents of alite (30 wt.%) and ye’elimite (51 wt.%) at a low firing temperature. The main hydration products include ettringite and AFm (or alumina, ferric oxide, monosulfate) phases. The A/CSA cement exhibits higher early compressive strength than commercial OPC and CSA cements after 1, 7, and 14 days, and presents similar mechanical properties to CSA cement after 90 days, with no visible carbonation.
Related References:
1. Oliver, J. G. J.; Janssens-Maenhout, G.; and Peters, J. A. H. W., “Trends in Global CO2 Emissions: 2012 Report,” PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands, 2012.
2. Gartner, E., “Industrially Interesting Approaches to ‘Low-CO2’ Cements,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1489-1498. doi: 10.1016/j.cemconres.2004.01.021
3. Zhang, L., and Glasser, F. P., Modern Concrete Materials: Binders, Additions and Admixtures, Thomas Telford, London, UK, 1999.
4. Zhang, L.; Su, M.; and Wang, Y., “Development of the Use of Sulfo- and Ferroaluminate Cements in China,” Advances in Cement Research, V. 11, No. 1, 1999, pp. 15-21. doi: 10.1680/adcr.1999.11.1.15
5. Duvallet, T.; Rathbone, R.; Henke, K.; and Jewell, R., “Low-Energy, Low CO2-Emitting Cements Produced from Coal Combustion By-Products and Red Mud,” Proceedings, World of Coal Ash (WOCA) Conference, Lexington, KY, 2009.
6. Jewell, R.; Rathbone, R.; Duvallet, T.; Robl, T.; and Mahboub, K., “Fabrication and Testing of Low-Energy Calcium Sulfoaluminate-Belite Cements That Utilize Circulating Fluidized Bed Combustion By-Products,” Coal Combustion and Gasification Products, V. 7, No. 1, 2015, pp. 9-18. doi: 10.4177/CCGP-D-15-00001.1
7. Marroccoli, M.; Pace, M. L.; Telesca, A.; and Valenti, G. L., “Synthesis of Calcium Sulfoaluminate Cements from Al2O3-Rich By-Products from Aluminium Manufacture,” Proceedings, Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 2010.
8. Huang, Y.; Qian, J.; Liu, C.; Liu, N.; Shen, Y.; Ma, Y.; Sun, H.; and Fan, Y., “Influence of Phosphorus Impurities on the Performances of Calcium Sulfoaluminate Cement,” Construction and Building Materials, V. 149, Sept. 2017, pp. 37-44. doi: 10.1016/j.conbuildmat.2017.05.028
9. Huang, Y.; Qian, J.; Kang, X.; Yu, J.; Fan, Y.; Dang, Y.; Zhang, W.; and Wang, S., “Belite-Calcium Sulfoaluminate Cement Prepared with Phosphogypsum: Influence of P2O5 and F on the Clinker Formation and Cement Performances,” Construction and Building Materials, V. 203, Apr. 2019, pp. 432-442. doi: 10.1016/j.conbuildmat.2019.01.112
10. Shen, Y.; Qian, J.; Huang, Y.; and Yang, D., “Synthesis of Belite Sulfoaluminate-Ternesite Cements with Phosphogypsum,” Cement and Concrete Composites, V. 63, Oct. 2015, pp. 67-75. doi: 10.1016/j.cemconcomp.2015.09.003
11. Beretka, J.; de Vito, B.; Santoro, L.; Sherman, N.; and Valenti, G. L., “Hydraulic Behaviour of Calcium Sulfoaluminate-Based Cements Derived from Industrial Process Wastes,” Cement and Concrete Research, V. 23, No. 5, 1993, pp. 1205-1214. doi: 10.1016/0008-8846(93)90181-8
12. Sahu, S., and Majling, J., “Preparation of Sulphoaluminate Belite Cement from Fly Ash,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 1065-1072. doi: 10.1016/0008-8846(94)90030-2
13. Quillin, K., “Performance of Belite–Sulfoaluminate Cements,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1341-1349. doi: 10.1016/S0008-8846(01)00543-9
14. Glasser, F. P., and Zhang, L., “High-Performance Cement Matrices based on Calcium Sulfoaluminate–Belite Compositions,” Cement and Concrete Research, V. 31, No. 12, 2001, pp. 1881-1886. doi: 10.1016/S0008-8846(01)00649-4
15. Winnefeld, F., and Barlag, S., “Calorimetric and Thermogravimetric Study on the Influence of Calcium Sulfate on the Hydration of Ye’elimite,” Journal of Thermal Analysis and Calorimetry, V. 101, No. 3, 2010, pp. 949-957. doi: 10.1007/s10973-009-0582-6
16. McCague, C.; Zhou, J.; Basheer, M.; and Bai, Y., “Development of Calcium Sulfoaluminate Cement Composites for Nuclear Waste Encapsulation,” Proceedings, International Workshop on Innovation in Low-Carbon Cement & Concrete Technology, University College London, UK, 2016.
17. Hargis, C. W.; Lothenbach, B.; Müller, C. J.; and Winnefeld, F., “Carbonation of Calcium Sulfoaluminate Mortars,” Cement and Concrete Composites, V. 80, July 2017, pp. 123-134. doi: 10.1016/j.cemconcomp.2017.03.003
18. Lothenbach, B.; Albert, B.; Morin, V.; and Gartner, E. M., “Hydration of Belite-Ye’elimite-Ferrite Cements: Thermodynamic Modeling,” Proceedings, Fourteenth International Conference on the Chemistry of Cement, Beijing, China 2015.
19. Morin, V.; Termkhajornkit, P.; Huet, B.; and Pham, G., “Impact of Quantity of Anhydrite, Water to Binder Ratio, Fineness on Kinetics and Phase Assemblage of Belite-Ye’elimite-Ferrite Cement,” Cement and Concrete Research, V. 99, Sept. 2017, pp. 8-17. doi: 10.1016/j.cemconres.2017.04.014
20. Gartner, E. M., “What Are BYF Cements, and How Do They Differ from CSA Cements?” Proceedings, The Future of Cement, 200 Years after Louis Vicat, UNESCO, Paris, France, 2017.
21. Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E. R.; la Torre, A. G. D.; León-Reina, L.; and Aranda, M. A. G., “Rietveld Quantitative Phase Analysis of Yeelimite-Containing Cements,” Cement and Concrete Research, V. 42, No. 7, 2012, pp. 960-971. doi: 10.1016/j.cemconres.2012.03.018
22. Álvarez-Pinazo, G.; Santacruz, I.; León-Reina, L.; Aranda, M. A. G.; and De la Torre, A. G., “Hydration Reactions and Mechanical Strength Developments of Iron-Rich Sulfobelite Eco-Cements,” Industrial & Engineering Chemistry Research, V. 52, No. 47, 2013, pp. 16606-16614. doi: 10.1021/ie402484e
23. Cuberos, A. J.; De la Torre, A. G.; Alvarez-Pinazo, G.; Martin-Sedeno, M. C.; Schollbach, K.; Pollmann, H.; and Aranda, M. A., “Active Iron-Rich Belite Sulfoaluminate Cements: Clinkering and Hydration,” Environmental Science & Technology, V. 44, No. 17, 2010, pp. 6855-6862. doi: 10.1021/es101785n
24. Morin, V.; Walenta, G.; Termkhajornkit, G. E. P.; Baco, I.; and Casabonne, J. M., “Hydration of a Belite-Calcium Sulfoaluminate-Ferrite Cement: AetherTM,” Proceedings, Thirteenth International Congress on the Chemistry of Cement, Madrid, Spain, 2011.
25. Taylor, H. F. W., Cement Chemistry, second edition, Thomas Telford, London, UK, 1997.
26. Guo, H., and Xie, J., “Thermodynamics and Kinetics of Calcium Sulphoaluminate,” Journal of Wuhan University of Technology-Materials Science Edition, V. 26, No. 4, 2011, pp. 719-722. doi: 10.1007/s11595-011-0300-7
27. Duvallet, T.; Zhou, Y.; Oberlink, A.; Jewell, R.; and Robl, T., “Novel Composite Mineralizers/Fluxes for the Production of A/CSA Clinkers,” Proceedings, Fifteenth International Congress on the Chemistry of Cement, Prague, Czech Republic, 2019.
28. Hanein, T.; Duvallet, T. Y.; Jewell, R. B.; Oberlink, A. E.; Robl, T. L.; Zhou, Y.; Glasser, F. P.; and Bannerman, M. N., “Alite Calcium Sulfoaluminate Cement: Chemistry and Thermodynamics,” Advances in Cement Research, V. 31, No. 3, 2019, pp. 94-105. doi: 10.1680/jadcr.18.00118
29. Pajares, I.; De la Torre, Á. G.; Martínez-Ramírez, S.; Puertas, F.; Blanco-Varela, M.-T.; and Aranda, M. A. G., “Quantitative Analysis of Mineralized White Portland Clinkers: The Structure of Fluorellestadite,” Powder Diffraction, V. 17, No. 4, 2002, pp. 281-286. doi: 10.1154/1.1505045
30. Giminez-Molina, S.; Blanco, M. T.; Marr, J.; and Glasser, F. P., “Phase Relations in the System Ca2SiO4-CaO-CaSO4-CaF2 Relevant to Cement Clinkering,” Advances in Cement Research, V. 4, No. 14, 1992, pp. 81-86. doi: 10.1680/adcr.1992.4.14.81
31. Blanco-Varela, M. T.; Vázquez, T.; and Palomo, A., “A Study of a New Liquid Phase to Obtain Low-Energy Cements,” Cement and Concrete Research, V. 16, No. 1, 1986, pp. 97-104. doi: 10.1016/0008-8846(86)90073-6
32. Liu, X. C.; Li, B. L.; Qi, T.; Liu, X. L.; and Li, Y. J., “Effect of TiO2 on Mineral Formation and Properties of Alite-Sulphoaluminate Cement,” Materials Research Innovations, V. 13, No. 2, 2009, pp. 92-97. doi: 10.1179/143307509X435178
33. Liu, X., and Li, Y., “Effect of MgO on the Composition and Properties of Alite-Sulphoaluminate Cement,” Cement and Concrete Research, V. 35, No. 9, 2005, pp. 1685-1687. doi: 10.1016/j.cemconres.2004.08.008
34. Pérez-Bravo, R.; Álvarez-Pinazo, G.; Compana, J. M.; Santacruz, I.; Losilla, E. R.; Bruque, S.; and De la Torre, Á. G., “Alite Sulfoaluminate Clinker: Rietveld Mineralogical and SEM-EDX Analysis,” Advances in Cement Research, V. 26, No. 1, 2014, pp. 10-20. doi: 10.1680/adcr.12.00044
35. Londono-Zuluaga, D.; Tobón, J. I.; Aranda, M. A. G.; Santacruz, I.; and De la Torre, A. G., “Clinkering and Hydration of Belite-Alite-Ye’elimite Cement,” Cement and Concrete Composites, V. 80, July 2017, pp. 333-341. doi: 10.1016/j.cemconcomp.2017.04.002
36. Londono-Zuluaga, D.; Tobon, J. I.; Aranda, M. A.; Santacruz, I.; and De la Torre, A. G., “Alite Hydration Mechanism in Presence of Ye’elimite Related to BAY Cements,” Proceedings, Fifteenth International Congress on the Chemistry of Cement, Prague, Czech Republic, 2019.
37. Lu, X.; Ye, Z.; Wang, S.; Du, P.; Li, C.; and Cheng, X., “Study on the Preparation and Properties of Belite-Ye’elimite-Alite Cement,” Construction and Building Materials, V. 182, Sept. 2018, pp. 399-405. doi: 10.1016/j.conbuildmat.2018.06.143
38. Zea-Garcia, J. D.; Santacruz, I.; Aranda, M. A. G.; and De la Torre, A. G., “Alite-Belite-Ye’elimite Cements: Effect of Dopants on the Clinker Phase Composition and Properties,” Cement and Concrete Research, V. 115, Jan. 2019, pp. 192-202. doi: 10.1016/j.cemconres.2018.10.019
39. Li, P.; Ma, Z.; Zhang, Z.; Li, X.; Lu, X.; Hou, P.; and Du, P., “Effect of Gypsum on Hydration and Hardening Properties of Alite Modified Calcium Sulfoaluminate Cement,” Materials (Basel), V. 12, No. 19, 2019, p. 3131. doi: 10.3390/ma12193131
40. SourceWatch, “Zhunge'er Power Station,” 2016. https://www.gem.wiki/Zhunge%27er_power_station. (last accessed Jan. 7, 2022)
41. Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; and Sun, Y., “Abundances and Distribution of Minerals and Elements in High-Alumina Coal Fly Ash from the Jungar Power Plant, Inner Mongolia, China,” International Journal of Coal Geology, V. 81, No. 4, 2010, pp. 320-332. doi: 10.1016/j.coal.2009.03.005
42. Duvallet, T. Y., “Influence of Ferrite Phase in Alite-Calcium Sulfoaluminate Cements,” PhD dissertation, University of Kentucky, Lexington, KY, 2014.
43. Snellings, R.; Chwast, J.; Cizer, Ö.; De Belie, N.; Dhandapani, Y.; Durdzinski, P.; Elsen, J.; Haufe, J.; Hooton, D.; Patapy, C.; Santhanam, M.; Scrivener, K.; Snoeck, D.; Steger, L.; Tongbo, S.; Vollpracht, A.; Winnefeld, F.; and Lothenbach, B., “Report of TC 238-SCM: Hydration Stoppage Methods for Phase Assemblage Studies of Blended Cements—Results of a Round Robin Test,” Materials and Structures, V. 51, No. 4, 2018, p. 111. doi: 10.1617/s11527-018-1237-5
44. CEN-EN 196-1, “Methods of Testing Cement—Part 1: Determination of Strength,” European Committee for Standardization, Brussels, Belgium, 2016.
45. Hewlett, P. C., and Massazza, F., Lea’s Chemistry of Cement and Concrete, Butterworth-Heinemann, Cambridge, MA, 2003.
46. Tobón, J. I.; Paya, J.; Borrachero, M. V.; Soriano, L.; and Restrepo, O. J., “Determination of the Optimum Parameters in the High Resolution Thermogravimetric Analysis (HRTG) for Cementitious Materials,” Journal of Thermal Analysis and Calorimetry, V. 107, No. 1, 2012, pp. 233-239. doi: 10.1007/s10973-010-0997-0
47. Li, G. S.; Walenta, G.; and Gartner, E. M., “Formation and Hydration of Low-CO2 Cements based on Belite, Calcium Sulfoaluminate and Calcium Aluminoferrite,” Proceedings, Twelfth International Congress on the Chemistry of Cement, Montreal, QC, Canada, 2007.
48. Winnefeld, F., and Barlag, S., “Influence of Calcium Sulfate and Calcium Hydroxide on the Hydration of Calcium Sulfoaluminate Clinker,” Zement Kalk Gips, V. 62, No. 12, 2009, pp. 42-53.
49. Bullard, J. W.; Jennings, H. M.; Livingston, R. A.; Nonat, A.; Scherer, G. W.; Schweitzer, J. S.; Scrivener, K. L.; and Thomas, J. J., “Mechanisms of Cement Hydration,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1208-1223. doi: 10.1016/j.cemconres.2010.09.011
50. Damidot, D., and Glasser, F. P., “Thermodynamic Investigation of the CaO.Al2O3.CaCO3.H2O Closed System at 25°C and the Influence of Na2O,” Advances in Cement Research, V. 7, No. 27, 1995, pp. 129-134. doi: 10.1680/adcr.1995.7.27.129
51. Collepardi, M.; Turriziani, R.; and Marcialis, A., “The Paste Hydration of 4CaO·3Al2O3·SO3 in Presence of Calcium Sulphate, Tricalcium Silicate and Dicalcium Silicate,” Cement and Concrete Research, V. 2, No. 2, 1972, pp. 213-223. doi: 10.1016/0008-8846(72)90043-9
52. Hargis, C. W.; Kirchheim, A. P.; Monteiro, P. J. M.; and Gartner, E. M., “Early Age Hydration of Calcium Sulfoaluminate (Synthetic Ye’elimite) in the Presence of Gypsum and Varying Amounts of Calcium Hydroxide,” Cement and Concrete Research, V. 48, June 2013, pp. 105-115. doi: 10.1016/j.cemconres.2013.03.001
53. Kasselouri, V.; Tsakiridis, P.; Malami, C.; Georgali, B.; and Alexandridou, C., “A Study on the Hydration Products of a Non-Expansive Sulfoaluminate Cement,” Cement and Concrete Research, V. 25, No. 8, 1995, pp. 1726-1736. doi: 10.1016/0008-8846(95)00168-9
54. Trauchessec, R.; Mechling, J. M.; Lecomte, A.; Roux, A.; and Le Rolland, B., “Hydration of Ordinary Portland Cement and Calcium Sulfoaluminate Cement Blends,” Cement and Concrete Composites, V. 56, Feb. 2015, pp. 106-114. doi: 10.1016/j.cemconcomp.2014.11.005
55. Winnefeld, F., and Lothenbach, B., “Hydration of Calcium Sulfoaluminate Cements—Experimental Findings and Thermodynamic Modelling,” Cement and Concrete Research, V. 40, No. 8, 2010, pp. 1239-1247. doi: 10.1016/j.cemconres.2009.08.014
56. Cuesta, A.; De la Torre, A. G.; Sanz, J.; Alvarez-Pinazo, G.; Santacruz, I.; Torre, Á. G. D.; Álvarez-Pinazo, G.; Cabeza, A.; Sanz, J.; and Aranda, M. A. G., “Structure of Stratlingite and Effect of Hydration Methodology on Microstructure,” Advances in Cement Research, V. 28, No. 1, 2016, pp. 13-22. doi: 10.1680/adcr.14.00104
57. Hu, Y.; Li, W.; Ma, S.; Wang, Q.; Zou, H.; and Shen, X., “The Composition and Performance of Alite-Ye’elimite Clinker Produced at 1300°C,” Cement and Concrete Research, V. 107, May 2018, pp. 41-48. doi: 10.1016/j.cemconres.2018.02.009
58. Chitvoranund, N.; Winnefeld, F.; Hargis, C. W.; Sinthupinyo, S.; and Lothenbach, B., “Synthesis and Hydration of Alite-Calcium Sulfoaluminate Cement,” Advances in Cement Research, V. 29, No. 3, 2017, pp. 101-111. doi: 10.1680/jadcr.1