Understanding Retardation of Cement Hydration Caused by Zinc

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Understanding Retardation of Cement Hydration Caused by Zinc

Author(s): Bartik Pandel and Paramita Mondal

Publication: Materials Journal

Volume: 119

Issue: 1

Appears on pages(s): 221-232

Keywords: cement hydration; characterization; induction period; kinetics; mechanism; retardation; zinc

DOI: 10.14359/51734197

Date: 1/1/2022

Abstract:
Zinc is known to retard the setting and hardening of cement paste/concrete, and its effects can be very severe depending on the dosage. Research in the past has primarily focused on understanding the effect of zinc on the mechanical and late-age properties of concrete. This study was undertaken with the objective of understanding the chemistry of the cement-zinc mixture and proposing solutions to mitigate the retardation. The real-time evolution of the cement-zinc mixture was studied with 0 to 1% zinc dosage at very early ages with material characterization techniques: isothermal calorimetry, pore solution analysis through X-ray fluorescence, and pH analysis. The supply of calcium and hydroxide ions were identified as the primary parameters in mitigating the retardation, and a hypothesis has been proposed to explain the observed effects.

Related References:

1. Taylor, H. F. W., Cement Chemistry, second edition, Thomas Telford, London, UK, 1997.

2. Barnes, P., and Bensted, J., Structure and Performance of Cements, second edition, CRC Press, London, UK, 2002.

3. Scrivener, K. L.; Juilland, P.; and Monteiro, P. J. M., “Advances in Understanding Hydration of Portland Cement,” Cement and Concrete Research, V. 78, Part A, 2015, pp. 38-56.

4. Shanahan, N. G., “Interaction of Cementitious Systems with Chemical Admixtures,” graduate theses and dissertations, University of South Florida, Tampa, FL, 2016.

5. Dirkse, T. P., “The Nature of the Zinc-Containing Ion in Strongly Alkaline Solutions,” Journal of the Electrochemical Society, V. 101, No. 6, 1954, pp. 328-331. doi: 10.1149/1.2781254

6. Sharma, R. A., “Kinetics of Calcium Zincate Formation,” Journal of the Electrochemical Society, V. 135, No. 8, 1988, pp. 1875-1882. doi: 10.1149/1.2096172

7. Dirkse, T. P.; Lugt, L. A. V.; and Hampson, N. A., “Exchange in the Zn, Zincate, ZnO System,” Journal of the Electrochemical Society, V. 118, No. 10, 1971, pp. 1606-1609. doi: 10.1149/1.2407792

8. Dirkse, T. P., “The Behavior of the Zinc Electrode in Alkaline Solutions II. Reaction Orders at the Equilibrium Potential,” Journal of the Electrochemical Society, V. 126, No. 4, 1979, pp. 541-543. doi: 10.1149/1.2129082

9. Chen, A. L.; Xu, D.; Chen, X. Y.; Zhang, W. Y.; and Liu, X. H., “Measurements of Zinc Oxide Solubility in Sodium Hydroxide Solution from 25 to 100 °C,” Transactions of Nonferrous Metals Society of China, V. 22, No. 6, 2012, pp. 1513-1516. doi: 10.1016/S1003-6326(11)61349-6

10. Dirkse, T. P., “The Behavior of the Zinc Electrode in Alkaline Solutions V. Supersaturated Zincate Solutions,” Journal of the Electrochemical Society, V. 128, No. 7, 1981, pp. 1412-1415. doi: 10.1149/1.2127654

11. Dirkse, T. P., “Composition and Properties of Saturated Solutions of ZnO in KOH,” Journal of the Electrochemical Society, V. 106, No. 2, 1959, pp. 154-155. doi: 10.1149/1.2427290

12. Wang, Y.-M., and Wainwright, G., “Formation and Decomposition Kinetic Studies of Calcium Zincate in 20 w/o KOH,” Journal of the Electrochemical Society, V. 133, No. 9, 1986, pp. 1869-1872. doi: 10.1149/1.2109037

13. Wang, Y.-M., “Effect of KOH Concentration on the Formation and Decomposition Kinetics of Calcium Zincate,” Journal of the Electrochemical Society, V. 137, No. 9, 1990, pp. 2800-2803. doi: 10.1149/1.2087076

14. Ziegler, F., and Johnson, C. A., “The Solubility of Calcium Zincate (CaZn2(OH)6·2H2O),” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1327-1332. doi: 10.1016/S0008-8846(01)00557-9

15. Penko, M., “Some Early Hydration Processes in Cement Paste as Monitored by Liquid Phase Composition Measurements,” PhD thesis, Purdue University, West Lafayette, IN, 1983.

16. Andersson, K.; Allard, B.; Bengtsson, M.; and Magnusson, B., “Chemical Composition of Cement Pore Solutions,” Cement and Concrete Research, V. 19, No. 3, 1989, pp. 327-332. doi: 10.1016/0008-8846(89)90022-7

17. Ortego, J. D.; Jackson, S.; Yu, G. S.; McWhinney, H.; and Cocke, D. L., “Solidification of Hazardous Substances—A TGA and FTIR Study of Portland Cement Containing Metal Nitrates,” Journal of Environmental Science and Health, Part A: Environmental Science and Engineering, V. 24, No. 6, 1989, pp. 589-602. doi: 10.1080/10934528909375504

18. Rossetti, V. A., and Medici, F., “Inertization of Toxic Metals in Cement Matrices: Effects on Hydration, Setting and Hardening,” Cement and Concrete Research, V. 25, No. 6, 1995, pp. 1147-1152. doi: 10.1016/0008-8846(95)00106-M

19. Poon, C. S.; Peters, C. J.; Perry, R.; Barnes, P.; and Barker, A. P., “Mechanisms of Metal Stabilization by Cement based Fixation Processes,” The Science of the Total Environment, V. 41, No. 1, 1985, pp. 55-71. doi: 10.1016/0048-9697(85)90161-5

20. Ziegler, F., “Heavy Metal Binding in Cement-Based Waste Materials: An Investigation of the Mechanism of Zinc Sorption to Calcium Silicate Hydrate,” Doctor of Natural Sciences dissertation, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2000.

21. Ouki, S. K., and Hills, C. D., “Microstructure of Portland Cement Pastes Containing Metal Nitrate Salts,” Waste Management (New York, N.Y.), V. 22, No. 2, 2002, pp. 147-151. doi: 10.1016/S0956-053X(01)00063-0

22. Diet, J.-N.; Moszkowicz, P.; and Sorrentino, D., “Behaviour of Ordinary Portland Cement during the Stabilization/Solidification of Synthetic Heavy Metal Sludge: Macroscopic and Microscopic Aspects,” Waste Management (New York, N.Y.), V. 18, No. 1, 1998, pp. 17-24. doi: 10.1016/S0956-053X(98)00003-8

23. McWhinney, H. G., and Cocke, D. L., “A Surface Study of the Chemistry of Zinc, Cadmium, and Mercury in Portland Cement,” Waste Management (New York, N.Y.), V. 13, No. 2, 2002, pp. 117-123. doi: 10.1016/0956-053X(93)90003-F

24. Nochaiyaa, T.; Sekine, Y.; Choopun, S.; and Chaipanich, A., “Microstructure, Characterizations, Functionality and Compressive Strength of Cement-Based Materials Using Zinc Oxide Nanoparticles as an Additive,” Journal of Alloys and Compounds, V. 630, May 2015, pp. 1-10. doi: 10.1016/j.jallcom.2014.11.043

25. Olmo, I. F.; Chacon, E.; and Irabien, A., “Influence of Lead, Zinc, Iron (III) and Chromium (III) Oxides on the Setting Time and Strength Development of Portland Cement,” Cement and Concrete Research, V. 31, No. 8, 2001, pp. 1213-1219. doi: 10.1016/S0008-8846(01)00545-2

26. Liu, J.; Jin, H.; Gu, C.; and Yang, Y., “Effects of Zinc Oxide Nanoparticles on Early-Age Hydration and the Mechanical Properties of Cement Paste,” Construction and Building Materials, V. 217, Aug. 2019, pp. 352-362. doi: 10.1016/j.conbuildmat.2019.05.027

27. Asavapisit, S.; Fowler, G.; and Cheeseman, C. R., “Solution Chemistry during Cement Hydration in the Presence of Metal Hydroxide Wastes,” Cement and Concrete Research, V. 27, No. 8, 1997, pp. 1249-1260. doi: 10.1016/S0008-8846(97)00109-9

28. Chen, Q. Y.; Hills, C. D.; Tyrer, M.; Slipper, I.; Shen, H. G.; and Brough, A., “Characterisation of Products of Tricalcium Silicate Hydration in the Presence of Heavy Metals,” Journal of Hazardous Materials, V. 147, No. 3, 2007, pp. 817-825. doi: 10.1016/j.jhazmat.2007.01.136

29. Arliguie, G.; Ollivier, J. P.; and Grandet, J., “Etude de l’effet retardateur du zinc sur l’hydratation de la pate de ciment Portland,” Cement and Concrete Research, V. 12, No. 1, 1982, pp. 79-86. doi: 10.1016/0008-8846(82)90101-6

30. Arliguie, G., and Grandet, J., “Etude par calorimetrie de l’hydratation du ciment Portland en presence de zinc,” Cement and Concrete Research, V. 15, No. 5, 1985, pp. 825-832. doi: 10.1016/0008-8846(85)90149-8

31. Arliguie, G., and Grandet, J., “Etude de l’hydratation du ciment en presence de zinc influence de la teneur en gypse,” Cement and Concrete Research, V. 20, No. 3, 1990, pp. 346-354. doi: 10.1016/0008-8846(90)90023-Q

32. Arliguie, G., and Grandet, J., “Influence de la composition d’un ciment portland sur son hydration en presence de zinc,” Cement and Concrete Research, V. 20, No. 4, 1990, pp. 517-524. doi: 10.1016/0008-8846(90)90096-G

33. Keppert, M.; Jerman, M.; Scheinherrová, L.; Reiterman, P.; Doušová, B.; and Černý, R., “Influence of Free and Sorbed Zinc on Cement Hydration,” Journal of Thermal Analysis and Calorimetry, V. 138, Mar, 2019, pp. 1935-1943. doi: 10.1007/s10973-019-08200-0

34. Ataie, F. F.; Juenger, M. C. G.; Taylor-Lange, S. C.; and Riding, K. A., “Comparison of the Retarding Mechanisms of Zinc Oxide and Sucrose on Cement Hydration and Interactions with Supplementary Cementitious Materials,” Cement and Concrete Research, V. 72, June 2015, pp. 128-136. doi: 10.1016/j.cemconres.2015.02.023

35. Ataie, F. F., “Influence of Cementitious System Composition on the Retarding Effects of Borax and Zinc Oxide,” Materials (Basel), V. 12, No. 15, 2019, p. 2340 doi: 10.3390/ma12152340

36. Šiler, P.; Kolářová, I.; Novotný, R.; Másilko, J.; Bednárek, J.; Janča, M.; Koplík, J.; Hajzler, J.; Matějka, L.; Marko, M.; Pokorný, P.; Opravil, T.; and Šoukal, F., “Application of Isothermal and Isoperibolic Calorimetry to Assess the Effect of Zinc on Hydration of Cement Blended with Slag,” Materials (Basel), V. 12, No. 18, 2019, p. 2930 doi: 10.3390/ma12182930

37. Flores-Velez, L. M., and Dominguez, O., “Characterization and Properties of Portland Cement Composites Incorporating Zinc-Iron Oxide Nanoparticles,” Journal of Materials Science, V. 37, Mar. 2002, pp. 983-988. doi: 10.1023/A:1014304131987

38. Cheng, T. W.; Lee, M. L.; Ko, M. S.; Ueng, T. H.; and Yang, S. F., “The Heavy Metal Adsorption Characteristics on Metakaolin-Based Geopolymer,” Applied Clay Science, V. 56, No. 6, 2012, pp. 90-96. doi: 10.1016/j.clay.2011.11.027

39. Minarikova, M., and Skvara, F., “Fixation of Heavy Metals in Geopolymeric Materials based on Brown Coal Fly Ash,” Ceramics-Silikáty, V. 50, No. 4, 2006, pp. 200-207.

40. Van Jaarsveld, J. G. S.; Van Deventer, J. S. J.; and Lorenzen, L., “The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part I. Theory and Applications,” Minerals Engineering, V. 10, No. 7, 1997, pp. 659-669. doi: 10.1016/S0892-6875(97)00046-0

41. Qian, G.; Sun, D. D.; and Tay, J. H., “Characterization of Mercury- and Zinc-Doped Alkali-Activated Slag Matrix: Part II. Zinc,” Cement and Concrete Research, V. 33, No. 8, 2003, pp. 1257-1262. doi: 10.1016/S0008-8846(03)00046-2

42. Garg, N., and White, C. E., “Mechanism of Zinc Oxide Retardation in Alkali-Activated Materials: An in situ X-Ray Pair Distribution Function Investigation,” Journal of Materials Chemistry. A, Materials for Energy and Sustainability, V. 5, No. 23, 2017, pp. 11794-11804. doi: 10.1039/C7TA00412E

43. Ley-Hernandez, A. M.; Lapeyre, J.; Cook, R.; Kumar, A.; and Feys, D., “Elucidating the Effect of Water-to-Cement Ratio on the Hydration Mechanisms of Cement,” ACS Omega, V. 3, No. 5, 2018, pp. 5092-5105. doi: 10.1021/acsomega.8b00097

44. Brown, P. W.; Harner, C. L.; and Prosen, E. J., “The Effect of Inorganic Salts on Tricalcium Silicate Hydration,” Cement and Concrete Research, V. 16, No. 1, 1986, pp. 17-22. doi: 10.1016/0008-8846(86)90063-3

45. Abdelrazig, B. E. I.; Bonner, D. G.; Nowell, D. V.; Dransfield, J. M.; and Egan, P. J., “The Solution Chemistry and Early Hydration of Ordinary Portland Cement Pastes with and without Admixtures,” Thermochimica Acta, V. 340-341, Dec. 1999, pp. 417-430. doi: 10.1016/S0040-6031(99)00286-5

46. Ghorab, H. Y., and El Fetouh, S. H. A., “Factors Affecting the Solubility of Gypsum: II. Effect of Sodium Hydroxide under Various Conditions,” Journal of Chemical Technology and Biotechnology. Chemical Technology, V. 35, No. 1, 1985, pp. 36-40. doi: 10.1002/jctb.5040350107

47. Rothstein, D.; Thomas, J. J.; Christensen, B. J.; and Jennings, H. M., “Solubility Behavior of Ca-, S-, Al-, and Si-Bearing Solid Phases in Portland Cement Pore Solutions as a Function of Hydration Time,” Cement and Concrete Research, V. 32, No. 10, 2002, pp. 1663-1671. doi: 10.1016/S0008-8846(02)00855-4

48. Ghorab, H. Y.; Wassef, M.; and El Fetouh, S. H. A., “Factors Affecting the Solubility of Gypsum. The Effect of Lime and Temperature in Different Media,” Journal of Chemical Technology and Biotechnology. Chemical Technology, V. 34, No. 8, 1984, pp. 464-467. doi: 10.1002/jctb.5040340809

49. Wistuba, S.; Stephan, D.; Raudaschl-Sieber, G.; and Plank, J., “Hydration and Hydration Products of Two-Phase Portland Cement Clinker Doped with Na2O,” Advances in Cement Research, V. 19, No. 3, 2007, pp. 125-131. doi: 10.1680/adcr.2007.19.3.125

50. Way, S. J., and Shayan, A., “Early Hydration of a Portland Cement in Water and Sodium Hydroxide Solutions: Composition of Solutions and Nature of Solid Phases,” Cement and Concrete Research, V. 19, No. 5, 1989, pp. 759-769. doi: 10.1016/0008-8846(89)90046-X

51. Kumar, A.; Sant, G.; Patapy, C.; Gianocca, C.; and Scrivener, K. L., “The Influence of Sodium and Potassium Hydroxide on Alite Hydration: Experiments and Simulations,” Cement and Concrete Research, V. 42, No. 11, 2012, pp. 1513-1523. doi: 10.1016/j.cemconres.2012.07.003

52. Halaweh, M. A., “Effect of Alkalis and Sulfates on Portland Cement Systems,” graduate theses and dissertations, University of South Florida, Tampa, FL, 2006.

53. Nicoleau, L.; Nonat, A.; and Perrey, D., “The Di- and Tricalcium Silicate Dissolutions,” Cement and Concrete Research, V. 47, May 2013, pp. 14-30. doi: 10.1016/j.cemconres.2013.01.017


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer