Rheological Characterization of Three-Dimensional-Printed Polymer Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Rheological Characterization of Three-Dimensional-Printed Polymer Concrete

Author(s): D. Heras Murcia, M. Abdellatef, M. Genedy, and M. M. Reda Taha

Publication: Materials Journal

Volume: 118

Issue: 6

Appears on pages(s): 189-201

Keywords: additive manufacturing; polymer; polymer concrete; rheology; three-dimensional (3D) printing

DOI: 10.14359/51733123

Date: 11/1/2021

Abstract:
Conventional cement-based concrete is widely used as a construction material due to its ability to flow before hardening and to adopt the shape of the formwork as it is placed. Contrarily, in layered extrusion additive manufacturing, commonly known as three-dimensional (3D) printing, concrete is shaped without formwork. This imposes stringent time-dependent rheological requirements of materials used for 3D printing. Polymer concrete (PC) is a material extensively used in the precast industry. This paper reports on the potential use of PC for 3D printing applications. The influence of mixture design parameters—specifically rheology modifier content, filler-polymer ratio, and aggregate-polymer ratio—on the rheological properties of a 3D-printable PC are investigated. The rheological properties of seven PC mixtures are tested and characterized. PC can be described as a Bingham pseudoplastic material, and a Herschel-Bulkley model can accurately describe its rheological behavior (dynamic shear stress) over time. The evolution of static yield stress over time was found to follow an exponential trend. The use of these models to predict the dynamic and static yield stress of PC shall enable the design of efficient and stable 3D printing. Finally, 3D-printed PC shows good mechanical performance with compressive strength above 30 MPa (4351 psi) at 7 days of age. Automation of the PC precast industry using 3D printing will create new opportunities for the use of PC in civil infrastructure.

Related References:

1. Bos, F.; Wolfs, R.; Ahmed, Z.; and Salet, T., “Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing,” Virtual and Physical Prototyping, V. 11, No. 3, 2016, pp. 209-225. doi: 10.1080/17452759.2016.1209867

2. Ferdous, W.; Manalo, A.; Aravinthan, T.; and Van Erp, G., “Properties of Epoxy Polymer Concrete Matrix: Effect of Resin-to-Filler Ratio and Determination of Optimal Mix for Composite Railway Sleepers,” Construction and Building Materials, V. 124, 2016, pp. 287-300. doi: 10.1016/j.conbuildmat.2016.07.111

3. Toufigh, V.; Hosseinali, M.; and Shirkhorshidi, S. M., “Experimental Study and Constitutive Modeling of Polymer Concrete’s Behavior in Compression,” Construction and Building Materials, V. 112, 2016, pp. 183-190. doi: 10.1016/j.conbuildmat.2016.02.100

4. Daghash, S. M.; Soliman, E. M.; Kandil, U. F.; and Reda Taha, M. M., “Improving Impact Resistance of Polymer Concrete Using CNTs,” International Journal of Concrete Structures and Materials, V. 10, No. 4, 2016, pp. 539-553. doi: 10.1007/s40069-016-0165-4

5. Emiroglu, M.; Douba, A. E.; Tarefder, R. A.; Kandil, U. F.; and Taha, M. R., “New Polymer Concrete with Superior Ductility and Fracture Toughness Using Alumina Nanoparticles,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 8, 2017, p. 04017069. doi: 10.1061/(ASCE)MT.1943-5533.0001894

6. Douba, A.; Emiroglu, M.; Kandil, U. F.; and Reda Taha, M. M., “Very Ductile Polymer Concrete Using Carbon Nanotubes,” Construction and Building Materials, V. 196, 2019, pp. 468-477. doi: 10.1016/j.conbuildmat.2018.11.021

7. Daghash, S. M.; Tarefder, R.; and Taha, M. M. R., “A New Class of Carbon Nanotube: Polymer Concrete with Improved Fatigue Strength,” Nanotechnology in Construction, K. Sobolev and S. P. Shah, eds. Cham, Springer International Publishing, 2015. pp. 285-290.

8. El-Hawary, M.; Al-Khaiat, H.; and Fereig, S., “Performance of Epoxy-Repaired Concrete in a Marine Environment,” Cement and Concrete Research, V. 30, No. 2, 2000, pp. 259-266. doi: 10.1016/S0008-8846(99)00242-2

9. Ferdous, W.; Manalo, A.; Khennane, A.; and Kayali, O., “Geopolymer Concrete-Filled Pultruded Composite Beams–Concrete Mix Design and Application,” Cement and Concrete Composites, V. 58, 2015, pp. 1-13. doi: 10.1016/j.cemconcomp.2014.12.012

10. ACI Committee 548, “Guide for the Use of Polymers in Concrete (ACI 548.1R-09),” American Concrete Institute, Farmington Hills, MI, 2009, 30 pp.

11. Rueda, M. M.; Auscher, M.-C.; Fulchiron, R.; Périé, T.; Martin, G.; Sonntag, P.; and Cassagnau, P., “Rheology and Applications of Highly Filled Polymers: A Review of Current Understanding,” Progress in Polymer Science, V. 66, 2017, pp. 22-53. doi: 10.1016/j.progpolymsci.2016.12.007

12. ACI Committee 548, “Polymer Concrete: Guidelines for Structural Applications (ACI 548.6R-19),” American Concrete Institute, Farmington Hills, MI, 2019, 30 pp.

13. Gorninski, J. P.; Dal Molin, D. C.; and Kazmierczak, C. S., “Study of the Modulus of Elasticity of Polymer Concrete Compounds and Comparative Assessment of Polymer Concrete and Portland Cement Concrete,” Cement and Concrete Research, V. 34, No. 11, 2004, pp. 2091-2095. doi: 10.1016/j.cemconres.2004.03.012

14. Rebeiz, K. S.; Serhal, S. P.; and Craft, A. P., “Properties of Polymer Concrete Using Fly Ash,” Journal of Materials in Civil Engineering, ASCE, V. 16, No. 1, 2004, pp. 15-19. doi: 10.1061/(ASCE)0899-1561(2004)16:1(15)

15. Bărbuţă, M.; Harja, M.; and Baran, I., “Comparison of Mechanical Properties for Polymer Concrete with Different Types of Filler,” Journal of Materials in Civil Engineering, ASCE, V. 22, No. 7, 2010, pp. 696-701. doi: 10.1061/(ASCE)MT.1943-5533.0000069

16. Bedi, R.; Chandra, R.; and Singh, S. P., “Mechanical Properties of Polymer Concrete,” Journal of Composites, V. 2013, 2013. doi: 10.1155/2013/948745

17. Gorninski, J. P.; Dal Molin, D. C.; and Kazmierczak, C. S., “Strength Degradation of Polymer Concrete in Acidic Environments,” Cement and Concrete Composites, V. 29, No. 8, 2007, pp. 637-645. doi: 10.1016/j.cemconcomp.2007.04.001

18. Liang, J.-Z., “Reinforcement and Quantitative Description of Inorganic Particulate-Filled Polymer Composites,” Composites. Part B, Engineering, V. 51, 2013, pp. 224-232. doi: 10.1016/j.compositesb.2013.03.019

19. Aghazadeh Mohandesi, J.; Refahi, A.; Sadeghi Meresht, E.; and Berenji, S., “Effect of Temperature and Particle Weight Fraction on Mechanical and Micromechanical Properties of Sand-Polyethylene Terephthalate Composites: A Laboratory and Discrete Element Method Study,” Composites. Part B, Engineering, V. 42, No. 6, 2011, pp. 1461-1467. doi: 10.1016/j.compositesb.2011.04.048

20. Boudenne, A.; Ibos, L.; Fois, M.; Majesté, J. C.; and Géhin, E., “Electrical and Thermal Behavior of Polypropylene Filled with Copper Particles,” Composites. Part A, Applied Science and Manufacturing, V. 36, No. 11, 2005, pp. 1545-1554. doi: 10.1016/j.compositesa.2005.02.005

21. Takahashi, S.; Imai, Y.; Kan, A.; Hotta, Y.; and Ogawa, H., “Dielectric and Thermal Properties of Isotactic Polypropylene/Hexagonal Boron Nitride Composites for High-Frequency Applications,” Journal of Alloys and Compounds, V. 615, 2014, pp. 141-145. doi: 10.1016/j.jallcom.2014.06.138

22. Danes, F.; Garnier, B.; and Dupuis, T., “Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler,” International Journal of Thermophysics, V. 24, No. 3, 2003, pp. 771-784. doi: 10.1023/A:1024096401779

23. Cavodeau, F.; Otazaghine, B.; Sonnier, R.; Lopez-Cuesta, J.-M.; and Delaite, C., “Fire Retardancy of Ethylene-Vinyl Acetate Composites – Evaluation of Synergistic Effects Between ATH and Diatomite Fillers,” Polymer Degradation and Stability, V. 129, 2016, pp. 246-259. doi: 10.1016/j.polymdegradstab.2016.04.018

24. Tanaka, T.; Kozako, M.; and Okamoto, K., “Toward High Thermal Conductivity Nano Micro Epoxy Composites with Sufficient Endurance Voltage,” Journal of International Council on Electrical Engineering, V. 2, No. 1, 2012, pp. 90-98. doi: 10.5370/JICEE.2012.2.1.090

25. Xia, T.; Cao, Y.; Oyler, N. A.; Murowchick, J.; Liu, L.; and Chen, X., “Strong Microwave Absorption of Hydrogenated Wide Bandgap Semiconductor Nanoparticles,” ACS Applied Materials and Interfaces, V. 7, No. 19, 2015, pp. 10407-10413. doi: 10.1021/acsami.5b01598

26. Pal, R., Rheology Of Particulate Dispersions And Composites, CRC Press, Boca Raton, FL, 2006.

27. Larson, R. G., The Structure and Rheology of Complex Fluids, Oxford University Press, Oxford, UK, 1999.

28. Kalyon, D. M., and Aktaş, S., “Factors Affecting the Rheology and Processability of Highly Filled Suspensions,” Annual Review of Chemical and Biomolecular Engineering, V. 5, No. 1, 2014, pp. 229-254. doi: 10.1146/annurev-chembioeng-060713-040211

29. Chong, J. S.; Christiansen, E. B.; and Baer, A. D., “Rheology of Concentrated Suspensions,” Journal of Applied Polymer Science, V. 15, No. 8, 1971, pp. 2007-2021. doi: 10.1002/app.1971.070150818

30. Metzner, A. B., “Rheology of Suspensions in Polymeric Liquids,” Journal of Rheology, V. 29, No. 6, 1985, pp. 739-775. doi: 10.1122/1.549808

31. Barnes, H. A.; Hutton, J. F.; and Walters, K., An Introduction to Rheology, 1st edition, Elsevier Woodhead Publishing, Cambridge, MA, 1989.

32. Shenoy, A. V., Rheology of Filled Polymer Systems, Springer, Switzerland, 2013, 484 pp.

33. Reiter, L.; Wangler, T.; Roussel, N.; and Flatt, R. J., “The Role of Early Age Structural Build-Up in Digital Fabrication with Concrete,” Cement and Concrete Research, V. 112, 2018, pp. 86-95. doi: 10.1016/j.cemconres.2018.05.011

34. Roussel, N., “Rheological Requirements for Printable Concretes,” Cement and Concrete Research, V. 112, 2018, pp. 76-85. doi: 10.1016/j.cemconres.2018.04.005

35. Mettler, L. K.; Wittel, F. K.; Flatt, R. J.; and Herrmann, H. J., “Evolution of Strength and Failure of SCC During Early Hydration,” Cement and Concrete Research, V. 89, 2016, pp. 288-296. doi: 10.1016/j.cemconres.2016.09.004

36. Salet, T. A. M.; Bos, F. P.; Wolfs, R. J. M.; and Ahmed, Z., “3D Concrete Printing–A Structural Engineering Perspective,” High Tech Concrete: Where Technology and Engineering Meet: Proceedings of the 2017 fib Symposium, Maastricht, the Netherlands, 2017.

37. Hambach, M., and Volkmer, D., “Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste,” Cement and Concrete Composites, V. 79, 2017, pp. 62-70. doi: 10.1016/j.cemconcomp.2017.02.001

38. Abdel-Fattah, H., and El-Hawary, M. M., “Flexural Behavior of Polymer Concrete,” Construction and Building Materials, V. 13, No. 5, 1999, pp. 253-262. doi: 10.1016/S0950-0618(99)00030-6

39. Almeida, A. E. F. S., and Sichieri, E. P., “Thermogravimetric Analyses and Mineralogical Study of Polymer Modified Mortar with Silica Fume,” Materials Research, V. 9, No. 3, 2006, pp. 321-326. doi: 10.1590/S1516-14392006000300012

40. Ohama, Y., “Mix Proportions and Properties of Polyester Resin Concretes,” Polymers in Concrete, SP-40, American Concrete Institute, Farmington Hills, MI, 1973, pp. 283-294.

41. Ferreira, A. J. M.; Tavares, C.; and Ribeiro, C., “Flexural Properties of Polyester Resin Concretes,” Journal of Polymer Engineering, V. 20, No. 6, 2000, pp. 459-468. doi: 10.1515/POLYENG.2000.20.6.459

42. Ribeiro, M. C. S.; Tavares, C. M. L.; Figueiredo, M.; Ferreira, A. J. M.; and Fernandes, A. A., “Bending Characteristics of Resin Concretes,” Materials Research, V. 6, No. 2, 2003, pp. 247-254. doi: 10.1590/S1516-14392003000200021

43. Ribeiro, M. C. S.; Nóvoa, P. R.; Ferreira, A. J. M.; and Marques, A. T., “Flexural Performance of Polyester and Epoxy Polymer Mortars Under Severe Thermal Conditions,” Cement and Concrete Composites, V. 26, No. 7, 2004, pp. 803-809. doi: 10.1016/S0958-9465(03)00162-8

44. Le, T. T.; Austin, S. A.; Lim, S.; Buswell, R. A.; Law, R.; Gibb, A. G. F.; and Thorpe, T., “Hardened Properties of High-Performance Printing Concrete,” Cement and Concrete Research, V. 42, No. 3, 2012, pp. 558-566. doi: 10.1016/j.cemconres.2011.12.003

45. Heras Murcia, D.; Genedy, M.; and Taha, R., “Examining The Significance of Infill Printing Pattern on the Anisotropy of 3D Printed Concrete,” Construction and Building Materials, V. 262, 2020, p. 120559. doi: 10.1016/j.conbuildmat.2020.120559

46. ASTM C618-19, “Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2019.

47. Heras Murcia, D., “3D-Printed Polymer Concrete for Infrastructure Applications,” ICIMART 2019, 3rd International Conference on Infrastructure Management, Assessment and Rehabilitation Techniques, 2019.

48. Weltmann, R. N., and Green, H., “Rheological Properties of Colloidal Solutions, Pigment Suspensions, and Oil Mixtures,” Journal of Applied Physics, V. 14, No. 11, 1943, pp. 569-576. doi: 10.1063/1.1714935

49. Zhang, Y.; Zhang, Y.; She, W.; Yang, L.; Liu, G.; and Yang, Y., “Rheological and Harden Properties of The High-Thixotropy 3D Printing Concrete,” Construction and Building Materials, V. 201, 2019, pp. 278-285. doi: 10.1016/j.conbuildmat.2018.12.061

50. Zhang, Y.; Zhang, Y.; Liu, G.; Yang, Y.; Wu, M.; and Pang, B., “Fresh Properties of a Novel 3D Printing Concrete Ink,” Construction and Building Materials, V. 174, 2018, pp. 263-271. doi: 10.1016/j.conbuildmat.2018.04.115

51. ASTM D4648/D4648M-16, “Standard Test Methods for Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil,” ASTM International, West Conshohocken, PA, 2016.

52. Herschel, V. W. H., “Consistency of Measurements Rubber-Benzene Solutions,” Kolloid-Zeitschrift, V. 39, 1926, pp. 291-300. doi: 10.1007/BF01432034

53. Yan, J., and James, A. E., “The Yield Surface of Viscoelastic and Plastic Fluids in a Vane Viscometer,” Journal of Non-Newtonian Fluid Mechanics, V. 70, No. 3, 1997, pp. 237-253. doi: 10.1016/S0377-0257(97)00005-0

54. Rebeiz, K. S., “Time-temperature Properties of Polymer Concrete Using Recycled PET,” Cement and Concrete Composites, V. 17, No. 2, 1995, pp. 119-124. doi: 10.1016/0958-9465(94)00004-I

55. Rebeiz, K. S., “Precast Use of Polymer Concrete Using Unsaturated Polyester Resin Based on Recycled PET Waste,” Construction and Building Materials, V. 10, No. 3, 1996, pp. 215-220. doi: 10.1016/0950-0618(95)00088-7

56. Tawfik, M. E., and Eskander, S. B., “Polymer Concrete from Marble Wastes and Recycled Polyethylene Terephthalate,” Journal of Elastomers and Plastics, V. 38, No. 1, 2006, pp. 65-79. doi: 10.1177/0095244306055569

57. Ohama, Y., and Demura, K., “Relation Between Curing Conditions and Compressive Strength of Polyester Resin Concrete,” International Journal of Cement Composites and Lightweight Concrete, V. 4, No. 4, 1982, pp. 241-244. doi: 10.1016/0262-5075(82)90028-8

58. ASTM C109/C109M-20b, “Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2020.

59. Dienes, G. J., “Flow Properties of Phenolic Resins,” Journal of Colloid Science, V. 4, No. 3, 1949, pp. 257-264. doi: 10.1016/0095-8522(49)90008-2

60. Roussel, N., “A Thixotropy Model for Fresh Fluid Concretes: Theory, Validation and Applications,” Cement and Concrete Research, V. 36, No. 10, 2006, pp. 1797-1806. doi: 10.1016/j.cemconres.2006.05.025

61. Roussel, N.; Ovarlez, G.; Garrault, S.; and Brumaud, C., “The Origins of Thixotropy of Fresh Cement Pastes,” Cement and Concrete Research, V. 42, No. 1, 2012, pp. 148-157. doi: 10.1016/j.cemconres.2011.09.004

62. Qian, Y., and Kawashima, S., “Distinguishing Dynamic and Static Yield Stress of Fresh Cement Mortars Through Thixotropy,” Cement and Concrete Composites, V. 86, 2018, pp. 288-296. doi: 10.1016/j.cemconcomp.2017.11.019

63. Cheng, D. C.-H., “Yield Stress: A Time-Dependent Property and How to Measure It,” Rheologica, V. 25, No. 5, 1986, pp. 542-554. doi: 10.1007/BF01774406

64. Le, T. T.; Austin, S. A.; Lim, S.; Buswell, R. A.; Gibb, A. G. F.; and Thorpe, T., “Mix Design and Fresh Properties for High-Performance Printing Concrete,” Materials and Structures, V. 45, No. 8, 2012, pp. 1221-1232. doi: 10.1617/s11527-012-9828-z


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer