Title:
Flow Characterization of Three-Dimensional Printable Cementitious Pastes during Extrusion Using Capillary Rheometry
Author(s):
Sooraj A. O. Nair and Narayanan Neithalath
Publication:
Materials Journal
Volume:
118
Issue:
6
Appears on pages(s):
123-137
Keywords:
capillary rheology; extrusion; slip layer; three-dimensional (3D) printing; wall shear stress
DOI:
10.14359/51733110
Date:
11/1/2021
Abstract:
Three-dimensional (3D) printing of cement-based materials is carried out using extrusion, which requires a fundamental understanding of the non-Newtonian flow of pastes through capillaries, which is the focus of this paper. 3D-printable cementitious pastes, qualified using steady-state extrusion pressure, are subjected to multiple-speed extrusion tests under apparent shear rates that correspond to typical printing speeds. The true, non-Newtonian flow curves are obtained by carrying out the relevant end corrections, deconvoluting the apparent shear rate (or velocity) into its true and wall slip components and applying the Weissenberg-Rabinowitsch correction. An exponential relationship is observed between the slip velocity and the wall shear stress, which is used to determine the slip layer thickness. The velocity profiles in the capillary demonstrated the shear-thinning nature of the pastes
and the existence of a plug-flow zone with invariant velocity, while the viscosity profiles showed the near-Newtonian response of the superplasticized paste at higher shear rates. The influence of printing speed, particle concentration, and the presence of superplasticizer on the slip layer thickness is explored. A particle-depleted slip layer could be beneficial in reducing the energy needed
for printing but could have implications in interlayer bonding and durability. The flow characterization approach presented herein can be adopted to optimize the paste material design and printing characteristics for extrusion-based 3D printing.
Related References:
1. Khoshnevis, B.; Hwang, D.; Yao, K.-T.; and Yeh, Z., “Mega-Scale Fabrication by Contour Crafting,” International Journal of Industrial and Systems Engineering., V. 1, No. 3, 2006, pp. 301-320. doi: 10.1504/IJISE.2006.009791
2. Hager, I.; Golonka, A.; and Putanowicz, R., “3D Printing of Buildings and Building Components as the Future of Sustainable Construction?” Procedia Engineering, V. 151, 2016, pp. 292-299. doi: 10.1016/j.proeng.2016.07.357
3. Bos, F.; Wolfs, R.; Ahmed, Z.; and Salet, T., “Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing,” Virtual and Physical Prototyping, V. 11, No. 3, 2016, pp. 209-225. doi: 10.1080/17452759.2016.1209867
4. Tay, Y. W. D.; Panda, B.; Paul, S. C.; Noor Mohamed, N. A.; Tan, M. J.; and Leong, K. F., “3D Printing Trends in Building and Construction Industry: A Review,” Virtual and Physical Prototyping, V. 12, No. 3, 2017, pp. 261-276. doi: 10.1080/17452759.2017.1326724
5. De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V. N.; Habert, G.; and Agusti-Juan, I., “Vision of 3D Printing with Concrete — Technical, Economic and Environmental Potentials,” Cement and Concrete Research, V. 112, Oct. 2018, pp. 25-36. doi: 10.1016/j.cemconres.2018.06.001
6. Buswell, R. A.; Leal de Silva, W. R.; Jones, S. Z.; and Dirrenberger, J., “3D Printing Using Concrete Extrusion: A Roadmap for Research,” Cement and Concrete Research, V. 112, Oct. 2018, pp. 37-49. doi: 10.1016/j.cemconres.2018.05.006
7. Ma, G.; Li, Z.; and Wang, L., “Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing,” Construction and Building Materials, V. 162, Feb. 2018, pp. 613-627. doi: 10.1016/j.conbuildmat.2017.12.051
8. Nerella, V.N.; Krause, M.; and Mechtcherine, V., “Practice-Oriented Buildability Criteria for Developing 3D-Printable Concretes in the Context of Digital Construction,” Doctoral research, 2018. doi: 10.20944/preprints201808.0441.v1
9. Panda, B.; Unluer, C.; and Tan, M. J., “Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing,” Cement and Concrete Composites, V. 94, Nov. 2018, pp. 307-314. doi: 10.1016/j.cemconcomp.2018.10.002
10. Nair, S. A. O.; Alghamdi, H.; Arora, A.; Mehdipour, I.; Sant, G.; and Neithalath, N., “Linking Fresh Paste Microstructure, Rheology and Extrusion Characteristics of Cementitious Binders for 3D Printing,” Journal of the American Ceramic Society, V. 102, No. 7, 2019, pp. 3951-3964. doi: 10.1111/jace.16305
11. Panda, B.; Ruan, S.; Unluer, C.; and Tan, M. J., “Improving the 3D Printability of High Volume Fly Ash Mixtures via The Use of Nano Attapulgite Clay,” Composites Part B: Engineering, V. 165, May 2019, pp. 75-83. doi: 10.1016/j.compositesb.2018.11.109
12. Alghamdi, H., and Neithalath, N., “Synthesis and Characterization of 3D-Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials,” Cement and Concrete Composites, V. 104, Nov. 2019, p. 103377. doi: 10.1016/j.cemconcomp.2019.103377
13. Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; and Morel, P., “Large-Scale 3D Printing of Ultra-High Performance Concrete – A New Processing Route for Architects and Builders,” Materials & Design, V. 100, June 2016, pp. 102-109. doi: 10.1016/j.matdes.2016.03.097
14. Leal da Silva, W. R.; Fryda, H.; Bousseau, J.-N.; Andreani, P.-A.; and Andersen, T. J., “Evaluation of Early-Age Concrete Structural Build-Up for 3D Concrete Printing by Oscillatory Rheometry,” M. Di Nicolantonio, E. Rossi, T. Alexander, eds., Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping, V. 975, Springer International Publishing, Basel, Switzerland, 2020, pp. 35-47. doi: 10.1007/978-3-030-20216-3_4
15. Lu, B.; Weng, Y.; Li, M.; Qian, Y.; Leong, K. F.; Tan, M. J.; and Qian, S., “A Systematical Review of 3D Printable Cementitious Materials,” Construction and Building Materials, V. 207, May 2019, pp. 477-490. doi: 10.1016/j.conbuildmat.2019.02.144
16. Alfani, R.; Grizzuti, N.; Guerrini, G. L.; and Lezzi, G., “The Use of the Capillary Rheometer for the Rheological Evaluation of Extrudable Cement-Based Materials,” Rheologica Acta, V. 46, No. 5, May 2007, pp. 703-709. doi: 10.1007/s00397-007-0164-0
17. Mooney, M., “Explicit Formulas for Slip and Fluidity,” Journal of Rheology, V. 2, 1931, pp. 210-222. doi: 10.1122/1.2116364
18. Bagley, E. B., “End Corrections in the Capillary Flow of Polyethylene,” Journal of Applied Physics, V. 28, No. 5, 1957, pp. 624-627. doi: 10.1063/1.1722814
19. Benbow, J., and Bridgwater, J., Paste Flow and Extrusion, Clarendon Press, Oxford, UK, 1993, 153 pp.
20. Zhou, Z.; Solomon, M. J.; Scales, P. J.; and Boger, D. V., “The Yield Stress of Concentrated Flocculated Suspensions of Size Distributed Particles,” Journal of Rheology, V. 43, No. 3, 1999, pp. 651-671. doi: 10.1122/1.551029
21. Khan, A. U.; Briscoe, B. J.; and Luckham, P. F., “Evaluation of Slip in Capillary Extrusion of Ceramic Pastes,” Journal of the European Ceramic Society, V. 21, No. 4, Apr. 2001, pp. 483-491. doi: 10.1016/S0955-2219(00)00213-2
22. Sochi, T., “Slip at Fluid-Solid Interface,” Polymer Reviews, V. 51, No. 4, 2011, pp. 309-340. doi: 10.1080/15583724.2011.615961
23. Denn, M. M., “Extrusion Instabilities and Wall Slip,” Annual Review of Fluid Mechanics, V. 33, Jan. 2001, pp. 265-287. doi: 10.1146/annurev.fluid.33.1.265
24. Cloitre, M., and Bonnecaze, R. T., “A Review on Wall Slip in High Solid Dispersions,” Rheologica Acta, V. 56, No. 3, Mar. 2017, pp. 283-305. doi: 10.1007/s00397-017-1002-7
25. Meeker, S. P.; Bonnecaze, R. T.; and Cloitre, M., “Slip and Flow in Pastes of Soft Particles: Direct Observation and Rheology,” Journal of Rheology, V. 48, No. 6, Nov. 2004, pp. 1295-1320. doi: 10.1122/1.1795171
26. Barnes, H. A., “A Review of the Slip (Wall Depletion) of Polymer Solutions, Emulsions and Particle Suspensions in Viscometers: Its Cause, Character, and Cure,” Journal of Non-Newtonian Fluid Mechanics, V. 56, No. 3, Mar. 1995, pp. 221-251. doi: 10.1016/0377-0257(94)01282-M
27. Kalyon, D. M., “Apparent Slip and Viscoplasticity of Concentrated Suspensions,” Journal of Rheology, V. 49, No. 3, May 2005, pp. 621-640. doi: 10.1122/1.1879043
28. Martin, P. J.; Wilson, D. I.; and Bonnett, P. E., “Rheological Study of a Talc-Based Paste for Extrusion-Granulation,” Journal of the European Ceramic Society, V. 24, No. 10-11, Sept. 2004, pp. 3155-3168. doi: 10.1016/j.jeurceramsoc.2003.11.003
29. Yilmaz, Z.; Doğan, M.; and Alkan, M., “Rheological and Wall Slip Properties of Kaolinite-Silicon Oil Pastes during Extrusion,” Journal of Ceramic Processing Research, V. 11, No. 6, 2010, pp. 752-759.
30. Rough, S. L., and Wilson, D. I., “Extrudate Fracture and Spheronisation of Microcrystalline Cellulose Pastes,” Journal of Materials Science, V. 40, No. 16, 2005, pp. 4199-4219. doi: 10.1007/s10853-005-2840-8
31. Yilmazer, U., and Kalyon, D. M., “Dilatancy of Concentrated Suspensions with Newtonian Matrices,” Polymer Composites, V. 12, No. 4, 1991, pp. 226-232. doi: 10.1002/pc.750120403
32. Soltani, F., and Yilmazer, Ü., “Slip Velocity and Slip Layer Thickness in Flow of Concentrated Suspensions,” Journal of Applied Polymer Science, V. 70, No. 3, Oct. 1998, pp. 515-522. doi: 10.1002/(SICI)1097-4628(19981017)70:33.0.CO;2-#
33. Vance, K.; Sant, G.; and Neithalath, N., “The Rheology of Cementitious Suspensions: A Closer Look at Experimental Parameters and Property Determination Using Common Rheological Models,” Cement and Concrete Composites, V. 59, May 2015, pp. 38-48. doi: 10.1016/j.cemconcomp.2015.03.001
34. Vance, K.; Kumar, A.; Sant, G.; and Neithalath, N., “The Rheological Properties of Ternary Binders Containing Portland Cement, Limestone, and Metakaolin or Fly Ash,” Cement and Concrete Research, V. 52, Oct. 2013, pp. 196-207. doi: 10.1016/j.cemconres.2013.07.007
35. Perrot, A.; Lanos, C.; Melinge, Y.; and Estellé, P., “Mortar Physical Properties Evolution in Extrusion Flow,” Rheologica Acta, V. 46, No. 8, Oct. 2007, pp. 1065-1073. doi: 10.1007/s00397-007-0195-6
36. Alexandrov, S.; Mishuris, G.; Miszuris, W.; and Sliwa, R. E., “On the Dead-Zone Formation and Limit Analysis in Axially Symmetric Extrusion,” International Journal of Mechanical Sciences, V. 43, No. 2, Feb. 2001, pp. 367-379. doi: 10.1016/S0020-7403(00)00016-3
37. Ma, G.; Li, Z.; Wang, L.; Wang, F.; and Sanjayan, J., “Mechanical Anisotropy of Aligned Fiber Reinforced Composite for Extrusion-Based 3D Printing,” Construction and Building Materials, V. 202, Mar. 2019, pp. 770-783. doi: 10.1016/j.conbuildmat.2019.01.008
38. Lawal, A., and Kalyon, D. M., “Nonisothermal Extrusion Flow of Viscoplastic Fluids with Wall Slip,” International Journal of Heat and Mass Transfer, V. 40, No. 16, Oct. 1997, pp. 3883-3897. doi: 10.1016/S0017-9310(97)00016-1
39. Jastrzebski, Z. D., “Entrance Effects and Wall Effects in an Extrusion Rheometer during Flow of Concentrated Suspensions,” Industrial & Engineering Chemistry Fundamentals, V. 6, No. 3, 1967, pp. 445-454. doi: 10.1021/i160023a019
40. Lenk, R. S., “The Hagen-Poiseuille Equation and the Rabinowitsch Correction. The Pressure Drop in Tapered Channels,” Polymer Rheology, Springer Netherlands, Dordrecht, the Netherlands, 1978, pp. 75-85.
41. Björnström, J., and Chandra, S., “Effect of Superplasticizers on the Rheological Properties of Cements,” Materials and Structures, V. 36, No. 10, Dec. 2003, pp. 685-692. doi: 10.1007/BF02479503
42. Andersen, P. J.; Roy, D. M.; and Gaidis, J. M., “The Effect of Superplasticizer Molecular Weight on its Adsorption on, and Dispersion of, Cement,” Cement and Concrete Research, V. 18, No. 6, Nov. 1988, pp. 980-986. doi: 10.1016/0008-8846(88)90035-X
43. Shaughnessy, R. III, and Clark, P. E., “The Rheological Behavior of Fresh Cement Pastes,” Cement and Concrete Research, V. 18, No. 3, May 1988, pp. 327-341. doi: 10.1016/0008-8846(88)90067-1
44. Bakrani Balani, S.; Chabert, F.; Nassiet, V.; and Cantarel, A., “Influence of Printing Parameters on the Stability of Deposited Beads in Fused Filament Fabrication of Poly(lactic) Acid,” Additive Manufacturing, V. 25, Jan. 2019, pp. 112-121. doi: 10.1016/j.addma.2018.10.012
45. Papanastasiou, T. C., “Flows of Materials with Yield,” Journal of Rheology, V. 31, No. 5, July 1987, pp. 385-404. doi: 10.1122/1.549926
46. Allmendinger, A.; Fischer, S.; Huwyler, J.; Mahler, H.-C.; Schwarb, E.; Zarraga, I. E.; and Mueller, R., “Rheological Characterization and Injection Forces of Concentrated Protein Formulations: An Alternative Predictive Model for non-Newtonian Solutions,” European Journal of Pharmaceutics and Biopharmaceutics, V. 87, No. 2, July 2014, pp. 318-328. doi: 10.1016/j.ejpb.2014.01.009
47. Kuder, K. G., and Shah, S. P., “Capillary Rheology of Extruded Cement-Based Materials,” Measuring, Monitoring and Modeling Concrete Properties, M.S. Konsta-Gdoutos, ed., Springer Netherlands, Dordrecht, the Netherlands, 2006, pp. 479-484.
48. Ghosh, S.; van den Ende, D.; Mugele, F.; and Duits, M. H. G., “Apparent Wall-Slip of Colloidal Hard-Sphere Suspensions in Microchannel Flow,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 491, Feb. 2016, pp. 50-56. doi: 10.1016/j.colsurfa.2015.11.066
49. Jana, S. C.; Kapoor, B.; and Acrivos, A., “Apparent Wall Slip Velocity Coefficients in Concentrated Suspensions of Noncolloidal Particles,” Journal of Rheology, V. 39, No. 6, Nov. 1995, pp. 1123-1132. doi: 10.1122/1.550631
50. Ahuja, A., and Singh, A., “Slip Velocity of Concentrated Suspensions in Couette Flow,” Journal of Rheology, V. 53, No. 6, Nov. 2009, pp. 1461-1485. doi: 10.1122/1.3213090
51. Lam, Y. C.; Wang, Z. Y.; Chen, X.; and Joshi, S. C., “Wall Slip of Concentrated Suspension Melts in Capillary Flows,” Powder Technology, V. 177, No. 3, Aug. 2007, pp. 162-169. doi: 10.1016/j.powtec.2007.03.044
52. Powell, J.; Assabumrungrat, S.; and Blackburn, S., “Design of Ceramic Paste Formulations for Co-Extrusion,” Powder Technology, V. 245, Sept. 2013, pp. 21-27. doi: 10.1016/j.powtec.2013.04.017
53. Medhi, B. J.; Ashok Kumar, A.; and Singh, A., “Apparent Wall Slip Velocity Measurements in Free Surface Flow of Concentrated Suspensions,” International Journal of Multiphase Flow, V. 37, No. 6, July 2011, pp. 609-619. doi: 10.1016/j.ijmultiphaseflow.2011.03.006
54. Malkin, A. Y., and Patlazhan, S. A., “Wall Slip for Complex Liquids – Phenomenon and Its Causes,” Advances in Colloid and Interface Science, V. 257, July 2018, pp. 42-57. doi: 10.1016/j.cis.2018.05.008
55. Simpson, M. M., and Janna, W. S., “Newtonian and Non-Newtonian Fluids: Velocity Profiles, Viscosity Data, and Laminar Flow Friction Factor Equations for Flow in a Circular Duct,” Volume 9: Engineering Education and Professional Development, ASME, New York, NY, 2008, pp. 173-180. https://doi.org/10.1115/IMECE2008-67611.10.1115/IMECE2008-67611
56. Aktas, S.; Kalyon, D. M.; Marín-Santibáñez, B. M.; and Pérez-González, J., “Shear Viscosity and Wall Slip Behavior of a Viscoplastic Hydrogel,” Journal of Rheology, V. 58, No. 2, Mar. 2014, pp. 513-535. doi: 10.1122/1.4866295
57. Yilmazer, U., and Kalyon, D. M., “Slip Effects in Capillary and Parallel Disk Torsional Flows of Highly Filled Suspensions,” Journal of Rheology, V. 33, No. 8, Nov. 1989, pp. 1197-1212. doi: 10.1122/1.550049
58. Müller‐Mohnssen, H.; Weiss, D.; and Tippe, A., “Concentration Dependent Changes of Apparent Slip in Polymer Solution Flow,” Journal of Rheology, V. 34, No. 2, Feb. 1990, pp. 223-244. doi: 10.1122/1.550125
59. Mueller, S.; Llewellin, E. W.; and Mader, H. M., “The Rheology of Suspensions of Solid Particles,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, V. 466, No. 2116, Apr. 2010, pp. 1201-1228. doi: 10.1098/rspa.2009.0445
60. Struble, L., and Sun, G.-K., “Viscosity of Portland Cement Paste as a Function of Concentration,” Advanced Cement Based Materials, V. 2, No. 2, Mar. 1995, pp. 62-69. doi: 10.1016/1065-7355(95)90026-8