Title:
Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders
Author(s):
Kala Kondepudi and Kolluru V. L. Subramaniam
Publication:
Materials Journal
Volume:
118
Issue:
6
Appears on pages(s):
87-96
Keywords:
alkali-activated; fly ash; printing; rheology; viscosity; yield stress
DOI:
10.14359/51733107
Date:
11/1/2021
Abstract:
Printable alkali-activated fly ash-slag mixtures, which are homogeneous under pressure and achieve buildability in the extrusion-based three-dimensonal (3D) layer printing process, are developed. A baseline mixture of fly ash and slag with a sodium hydroxide activator is modified to achieve extrusion-based printing requirements, including printability, shape retention, and buildability. The role of additional dry constituents such as microsilica and clay in reducing phase separation under pressure for producing printable mixtures is evaluated. Phase separation in the mixture under pressure is sensitive to the particle size distribution. Printable mixtures, which do not segregate under pressure, have a narrower distribution of particle sizes, indicated by the Rosin-Rammler fit. The link between the rheological behavior of the mixture and its performance in printing is evaluated. The constant strain rate rheological response of the mixtures is distinguished between the yield-type and Maxwell-flow behaviors. Mixtures that exhibit a Maxwell-flow type response produce a steadily continuing deformation and are not buildable. The distinction between Maxwell-flow and yield-type behaviors is essential for identifying buildable mixtures. Alkali-activated mixtures exhibit a viscoelastic response with both elastic and viscous components. The proportion of the storage to the loss modulus from rheological measurements provides an index of buildability. Achieving buildability with multiple layers depends on an internal structure capable of resisting elastic deformation, which is indicated by the development of the storage modulus with time. The role of additives on specific aspects of the rheological behavior of the mixtures is evaluated. The rheological behavior required for printing is achieved using carboxymethylcellulose (CMC), which produces a yield-type behavior, and enhances the storage modulus and thixotropy of the alkali-activated mixture.
Related References:
1. Buswell, R. A.; Soar, R. C.; Gibb, A. G. F.; and Thorpe, A., “Freeform Construction: Mega-Scale Rapid Manufacturing for Construction,” Automation in Construction, V. 16, No. 2, Mar. 2007, pp. 224-231. doi: 10.1016/j.autcon.2006.05.002
2. ISO/ASTM 52900-15, “Standard Terminology for Additive Manufacturing—General Principles—Terminology,” ASTM International, West Conshohocken, PA, 2015, 9 pp.
3. Ghaffar, S. H.; Corker, J.; and Fan, M., “Additive Manufacturing Technology and its Implementation in Construction as an Eco-Innovative Solution,” Automation in Construction, V. 93, Sept. 2018, pp. 1-11. doi: 10.1016/j.autcon.2018.05.005
4. Perrot, A.; Rangeard, D.; Nerella, V. N.; and Mechtcherine, V., “Extrusion of Cement-Based Materials-An Overview,” RILEM Technical Letters, V. 3, 2018, pp. 91-97.
5. Khoshnevis, B.; Hwang, D.; Yao, K.-T.; and Yeh, Z., “Mega-Scale Fabrication by Contour Crafting,” International Journal of Industrial and Systems Engineering, V. 1, No. 3, 2006, pp. 301-320. doi: 10.1504/IJISE.2006.009791
6. Valente, M.; Sibai, A.; and Sambucci, M., “Extrusion-Based Additive Manufacturing of Concrete Products: Revolutionizing and Remodeling the Construction Industry,” Journal of Composites Science, V. 3, No. 3, 2019, 20 pp. doi: 10.3390/jcs3030088
7. Buswell, R. A.; Leal de Silva, W. R.; Jones, S. Z.; and Dirrenberger, J., “3D Printing using Concrete Extrusion: A Roadmap for Research,” Cement and Concrete Research, V. 112, Oct. 2018, pp. 37-49. doi: 10.1016/j.cemconres.2018.05.006
8. Wolfs, R. J. M.; Bos, F. P.; and Salet, T. A. M., “Early Age Mechanical Behaviour of 3D Printed Concrete: Numerical Modelling and Experimental Testing,” Cement and Concrete Research, V. 106, Apr. 2018, pp. 103-116. doi: 10.1016/j.cemconres.2018.02.001
9. Roussel, N., “Rheological Requirements for Printable Concretes,” Cement and Concrete Research, V. 112, Oct. 2018, pp. 76-85. doi: 10.1016/j.cemconres.2018.04.005
10. Nerella, V. N.; Näther, M.; Iqbal, A.; Butler, M.; and Mechtcherine, V., “Inline Quantification of Extrudability of Cementitious Materials for Digital Construction,” Cement and Concrete Composites, V. 95, Jan. 2019, pp. 260-270. doi: 10.1016/j.cemconcomp.2018.09.015
11. Panda, B.; Lim, J. H.; and Tan, M. J., “Mechanical Properties and Deformation Behaviour of Early Age Concrete in the Context of Digital Construction,” Composites Part B: Engineering, V. 165, May 2019, pp. 563-571. doi: 10.1016/j.compositesb.2019.02.040
12. Alghamdi, H.; Nair, S. A. O.; and Neithalath, N., “Insights into Material Design, Extrusion Rheology, and Properties of 3D-Printable Alkali-Activated Fly Ash-Based Binders,” Materials & Design, V. 167, Apr. 2019, p. 107634. doi: 10.1016/j.matdes.2019.107634
13. Khelifi, H.; Perrot, A.; Lecompte, T.; Rangeard, D.; and Ausias, G., “Prediction of Extrusion Load and Liquid Phase Filtration during Ram Extrusion of High Solid Volume Fraction Pastes,” Powder Technology, V. 249, Nov. 2013, pp. 258-268.
14. Weng, Y.; Li, M.; Tan, M. J.; and Qian, S., “Design 3D Printing Cementitious Materials via Fuller Thompson Theory and Marson-Percy Model,” Construction and Building Materials, V. 163, Feb. 2018, pp. 600-610. doi: 10.1016/j.conbuildmat.2017.12.112
15. Jones, S. Z.; Bentz, D. P.; Martys, N. S.; George, W. L.; and Thomas, A., “Rheological Control of 3D Printable Cement Paste and Mortars,” First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018, RILEM Bookseries, V. 19, Springer International Publishing, Basel, Switzerland, Sept. 2018, pp. 70-80.
16. Marchon, D.; Kawashima, S.; Bessaies-Bey, H.; Mantellato, S.; and Ng, S., “Hydration and Rheology Control of Concrete for Digital Fabrication: Potential Admixtures and Cement Chemistry,” Cement and Concrete Research, V. 112, Oct. 2018, pp. 96-110. doi: 10.1016/j.cemconres.2018.05.014
17. Chen, Y.; Chaves Figueiredo, S.; Yalçinkaya, Ç.; Çopuroğlu, O.; Veer, F.; and Schlangen, E., “The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing,” Materials (Basel), V. 12, No. 9, 2019, p. 1374. doi: 10.3390/ma12091374
18. Skibicki, S.; Kaszyńska, M.; Wahib, N.; Techman, M.; Federowicz, K.; Zieliński, A.; Wróblewski, T.; Olczyk, N.; and Hoffmann, M., “Properties of Composite Modified with Limestone Powder for 3D Concrete Printing,” Second RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2020, RILEM Bookseries, V. 28, Springer International Publishing, Basel, Switzerland, July 2020, pp. 125-134.
19. Rahman, M. K.; Baluch, M. H.; and Malik, M. A., “Thixotropic Behavior of Self Compacting Concrete with Different Mineral Admixtures,” Construction and Building Materials, V. 50, Jan. 2014, pp. 710-717. doi: 10.1016/j.conbuildmat.2013.10.025
20. Bessaies-Bey, H.; Baumann, R.; Schmitz, M.; Radler, M.; and Roussel, N., “Effect of Polyacrylamide on Rheology of Fresh Cement Pastes,” Cement and Concrete Research, V. 76, Oct. 2015, pp. 98-106.
21. Qian, Y., and De Schutter, G., “Enhancing Thixotropy of Fresh Cement Pastes with Nanoclay in Presence of Polycarboxylate Ether Superplasticizer (PCE),” Cement and Concrete Research, V. 111, Sept. 2018, pp. 15-22. doi: 10.1016/j.cemconres.2018.06.013
22. Tregger, N.; Pakula, M.; and Shah, S. P., “Influence of Micro- and Nanoclays on Fresh State of Concrete,” Transportation Research Record: Journal of the Transportation Research Board, V. 2141, No. 1, 2010, pp. 68-74. doi: 10.3141/2141-12
23. Panda, B.; Unluer, C.; and Tan, M. J., “Extrusion and Rheology Characterization of Geopolymer Nanocomposites used in 3D Printing,” Composites Part B: Engineering, V. 176, Nov. 2019, p. 107290. doi: 10.1016/j.compositesb.2019.107290
24. Perrot, A.; Rangeard, D.; and Mélinge, Y., “Prediction of the Ram Extrusion Force of Cement-Based Materials,” Applied Rheology (Lappersdorf, Germany), V. 24, No. 5, Oct. 2014, pp. 34-40.
25. Perrot, A.; Mélinge, Y.; Rangeard, D.; Micaelli, F.; Estellé, P.; and Lanos, C., “Use of Ram Extruder as a Combined Rheo-Tribometer to Study the Behaviour of High Yield Stress Fluids at Low Strain Rate,” Rheologica Acta, V. 51, No. 8, 2012, pp. 743-754. doi: 10.1007/s00397-012-0638-6
26. Benchabane, A., and Bekkour, K., “Rheological Properties of Carboxymethyl Cellulose (CMC) Solutions,” Colloid and Polymer Science, V. 286, No. 10, Sept. 2008, Article No. 1173. doi: 10.1007/s00396-008-1882-2
27. Kondepudi, K., and Subramaniam, K. V. L., “Rheological Characterization of Low-Calcium Fly Ash Suspensions in Alkaline Silicate Colloidal Solutions for Geopolymer Concrete Production,” Journal of Cleaner Production, V. 234, Oct. 2019, pp. 690-701. doi: 10.1016/j.jclepro.2019.06.124
28. Kawashima, S.; Kim, J. H.; Corr, D. J.; and Shah, S. P., “Study of the Mechanisms Underlying the Fresh-State Response of Cementitious Materials Modified with Nanoclays,” Construction and Building Materials, V. 36, Nov. 2012, pp. 749-757. doi: 10.1016/j.conbuildmat.2012.06.057
29. Tregger, N.; Knai, H.; and Shah, S. P., “Flocculation Behavior of Cement Pastes Containing Clays and Fly Ash,” Transition from Fluid to Solid: Re-Examining the Behavior of Concrete at Early Ages, SP-259, K. A. Riding, ed., American Concrete Institute, Farmington Hills, MI, Feb. 2009, pp. 139-150.
30. Xia, M., and Sanjayan, J., “Method of Formulating Geopolymer for 3D Printing for Construction Applications,” Materials & Design, V. 110, Nov. 2016, pp. 382-390. doi: 10.1016/j.matdes.2016.07.136
31. Panda, B.; Paul, S. C.; Hui, L. J.; Tay, Y. W. D.; and Tan, M. J., “Additive Manufacturing of Geopolymer for Sustainable Built Environment,” Journal of Cleaner Production, V. 167, Nov. 2017, pp. 281-288. doi: 10.1016/j.jclepro.2017.08.165
32. Panda, B., and Tan, M. J., “Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing,” Ceramics International, V. 44, No. 9, June 2018, pp. 10258-10265. doi: 10.1016/j.ceramint.2018.03.031
33. Lee, N. K., and Lee, H. K., “Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature,” Construction and Building Materials, V. 47, Oct. 2013, pp. 1201-1209. doi: 10.1016/j.conbuildmat.2013.05.107
34. Saha, S., and Rajasekaran, C., “Enhancement of the Properties of Fly Ash Based Geopolymer Paste by Incorporating Ground Granulated Blast Furnace Slag,” Construction and Building Materials, V. 146, Aug. 2017, pp. 615-620. doi: 10.1016/j.conbuildmat.2017.04.139
35. Hambach, M.; Rutzen, M.; and Volkmer, D., “Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste,” 3D Concrete Printing Technology, Butterworth-Heinemann, Oxford, UK, 2019, pp. 73-113.
36. Kashani, A., and Ngo, T. D., “Optimisation of Mixture Properties for 3D Printing of Geopolymer Concrete,” Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC 2018), Berlin, Germany, July 20-25, 2018, pp. 1-8.
37. IS 12089:1987 (Reaffirmed 2004), “Specification for Granulated Slag for the Manufacture of Portland Slag Cement,” Bureau of Indian Standards, New Delhi, India, 9 pp.
38. Bhagath Singh, G. V. P., and Subramaniam, K. V. L., “Effect of Active Components on Strength Development in Alkali-Activated Low Calcium Fly Ash Cements,” Journal of Sustainable Cement-Based Materials, V. 8, No. 1, 2019, pp. 1-19. doi: 10.1080/21650373.2018.1520657
39. IS 3812:2013, “Specification for Pulverized Fuel Ash,” Bureau of Indian Standards, New Delhi, India.
40. Kaci, A.; Chaouche, M.; and Andréani, P.-A., “Influence of Bentonite Clay on the Rheological Behaviour of Fresh Mortars,” Cement and Concrete Research, V. 41, No. 4, Apr. 2011, pp. 373-379. doi: 10.1016/j.cemconres.2011.01.002
41. Kawashima, S.; Kim, J. H.; Corr, D. J.; and Shah, S. P., “Study of the Mechanisms Underlying the Fresh-State Response of Cementitious Materials Modified with Nanoclays,” Construction and Building Materials, V. 36, Nov. 2012, pp. 749-757. doi: 10.1016/j.conbuildmat.2012.06.057
42. Bhagath Singh, G. V. P.; Subrahmanyam, C.; and Subramaniam, K. V. L., “Dissolution of the Glassy Phase in Low-Calcium Fly Ash during Alkaline Activation,” Advances in Cement Research, V. 30, No. 7, July 2018, pp. 313-322. doi: 10.1680/jadcr.17.00170
43. Bhagath Singh, G. V. P.; and Subramaniam, K. V. L., “Evaluation of Sodium Content and Sodium Hydroxide Molarity on Compressive Strength of Alkali Activated Low-Calcium Fly Ash,” Cement and Concrete Composites, V. 81, Aug. 2017, pp. 122-132. doi: 10.1016/j.cemconcomp.2017.05.001
44. Reddy, K. C., and Subramaniam, K. V. L., “Blast Furnace Slag Hydration in an Alkaline Medium: Influence of Sodium Content and Sodium Hydroxide Molarity,” Journal of Materials in Civil Engineering, ASCE, V. 32, No. 12, Dec. 2020, p. 04020371. doi: 10.1061/(ASCE)MT.1943-5533.0003455
45. Saak, A. W.; Jennings, H. M.; and Shah, S. P., “The Influence of Wall Slip on Yield Stress and Viscoelastic Measurements of Cement Paste,” Cement and Concrete Research, V. 31, No. 2, Feb. 2001, pp. 205-212. doi: 10.1016/S0008-8846(00)00440-3
46. Olivas, A.; Helsel, M. A.; Martys, N. S.; Ferraris, C. F.; George, W. L.; and Ferron, R., “Rheological Measurement of Suspensions without Slippage: Experiment and Model,” National Institute of Standards and Technology Technical Note, Report No. 1946, Dec. 2016. doi: 0.6028/NIST.TN.1946
47. Haist, M.; Link, J.; Nicia, D.; Leinitz, S.; Baumert, C.; von Bronk, T.; Cotardo, D.; Eslami Pirharati, M.; Fataei, S.; Garrecht, H.; Gehlen, C.; Hauschildt, I.; Ivanova, I.; Jesinghausen, S.; Klein, C.; Krauss, H.-W.; Lohaus, L.; Lowke, D.; Mazanec, O.; Pawelczyk, S.; Pott, U.; Radebe, N. W.; Riedmiller, J. J.; Schmid, H.-J.; Schmidt, W.; Secrieru, E.; Stephan, D.; Thiedeitz, M.; Wilhelm, M.; and Mechtcherine, V., “Interlaboratory Study on Rheological Properties of Cement Pastes and Reference Substances: Comparability of Measurements Performed with Different Rheometers and Measurement Geometries,” Materials and Structures, V. 53, No. 4, Aug. 2020, Article 92. doi: 10.1617/s11527-020-01477-w
48. Vance, K.; Dakhane, A.; Sant, G.; and Neithalath, N., “Observations on the Rheological Response of Alkali Activated Fly Ash Suspensions: The Role of Activator Type and Concentration,” Rheologica Acta, V. 53, No. 10-11, Nov. 2014, pp. 843-855. doi: 10.1007/s00397-014-0793-z
49. Saak, A. W., “Characterization and Modeling of the Rheology of Cement Paste: With Applications toward Self-Flowing Materials,” PhD thesis, Northwestern University, Evanston, IL, USA, 2000, 256 pp.
50. Meyers, M. A., and Chawla, K. K., Mechanical Behavior of Materials, Cambridge University Press, Cambridge, UK, Nov. 2008, 880 pp.
51. Kondepudi, K., and Subramaniam, K. V. L., “Critical Evaluation of Rheological Behaviour of Low-Calcium Fly Ash Geopolymer Pastes,” Advances in Cement Research, May 2021, pp. 1-11. doi: 10.1680/jadcr.20.00043
52. Gadkar, A., and Subramaniam, K. V. L., “An Evaluation of Yield and Maxwell Fluid Behaviors of Fly Ash Suspensions in Alkali-Silicate Solutions,” Materials and Structures, V. 52, No. 6, Dec. 2019, Article 117. doi: 10.1617/s11527-019-1429-7
53. Frigaard, I. A.; Paso, K. G.; and de Souza Mendes, P. R., “Bingham’s Model in the Oil and Gas Industry,” Rheologica Acta, V. 56, No. 3, Mar. 2017, pp. 259-282. doi: 10.1007/s00397-017-0999-y
54. Puertas, F.; Varga, C.; and Alonso, M. M., “Rheology of Alkali-Activated Slag Pastes. Effect of the Nature and Concentration of the Activating Solution,” Cement and Concrete Composites, V. 53, Oct. 2014, pp. 279-288. doi: 10.1016/j.cemconcomp.2014.07.012
55. Subramaniam, K. V., and Wang, X., “An Investigation of Microstructure Evolution in Cement Paste through Setting using Ultrasonic and Rheological Measurements,” Cement and Concrete Research, V. 40, No. 1, Jan. 2010, pp. 33-44. doi: 10.1016/j.cemconres.2009.09.018
56. Le, T. T.; Austin, S. A.; Lim, S.; Buswell, R. A.; Gibb, A. G. F.; and Thorpe, T., “Mix Design and Fresh Properties for High-Performance Printing Concrete,” Materials and Structures, V. 45, No. 8, Aug. 2012, pp. 1221-1232. doi: 10.1617/s11527-012-9828-z
57. Toutou, Z.; Roussel, N.; and Lanos, C., “The Squeezing Test: A Tool to Identify Firm Cement-Based Material’s Rheological Behaviour and Evaluate their Extrusion Ability,” Cement and Concrete Research, V. 35, No. 10, Oct. 2005, pp. 1891-1899. doi: 10.1016/j.cemconres.2004.09.007
58. Jayathilakage, R.; Rajeev, P.; and Sanjayan, J. G., “Yield Stress Criteria to Assess the Buildability of 3D Concrete Printing,” Construction and Building Materials, V. 240, Apr. 2020, p. 117989. doi: 10.1016/j.conbuildmat.2019.117989
59. Chhabra, R. P., and Richardson, J. F., Non-Newtonian Flow and applied Rheology: Engineering Applications, Butterworth-Heinemann, Oxford, UK, Apr. 2011, 536 pp.
60. Nair, S. A. O.; Alghamdi, H.; Arora, A.; Mehdipour, I.; Sant, G.; and Neithalath, N., “Linking Fresh Paste Microstructure, Rheology and Extrusion Characteristics of Cementitious Binders for 3D Printing,” Journal of the American Ceramic Society, V. 102, No. 7, July 2019, pp. 3951-3964. doi: 10.1111/jace.16305
61. Suzuki, M.; Oshima, T.; Ichiba, H.; and Hasegawa, I., “Void Fraction of Multi-Component Randomly Packed Beds with Size Distributions,” Kona Powder and Particle Journal, No. 4, 1986, pp. 4-12. doi: 10.14356/kona.1986005
62. Kwan, A. K. H., and Wong, H. H. C., “Effects of Packing Density, Excess Water and Solid Surface Area on Flowability of Cement Paste,” Advances in Cement Research, V. 20, No. 1, Jan. 2008, pp. 1-11. doi: 10.1680/adcr.2008.20.1.1
63. Kashani, A.; San Nicolas, R.; Qiao, G. G.; van Deventer, J. S. J.; and Provis, J. L., “Modelling the Yield Stress of Ternary Cement–Slag–Fly Ash Pastes based on Particle Size Distribution,” Powder Technology, V. 266, Nov. 2014, pp. 203-209. doi: 10.1016/j.powtec.2014.06.041
64. O’Neill, R.; McCarthy, H. O.; Cunningham, E.; Montufar, E.; Ginebra, M.-P.; Wilson, D. I.; Lennon, A.; and Dunne, N., “Extent and Mechanism of Phase Separation during the Extrusion of Calcium Phosphate Pastes,” Journal of Materials Science: Materials in Medicine, V. 27, No. 2, Feb. 2016, Article 29. doi: 10.1007/s10856-015-5615-z
65. Roussel, N.; Ovarlez, G.; Garrault, S.; and Brumaud, C., “The Origins of Thixotropy of Fresh Cement Pastes,” Cement and Concrete Research,
V. 42, No. 1, Jan. 2012, pp. 148-157. doi: 10.1016/j.cemconres.2011.09.004
66. Perrot, A.; Pierre, A.; Vitaloni, S.; and Picandet, V., “Prediction of Lateral Form Pressure Exerted by Concrete at Low Casting Rates,” Materials and Structures, V. 48, No. 7, July 2015, pp. 2315-2322. doi: 10.1617/s11527-014-0313-8
67. Perrot, A.; Rangeard, D.; and Pierre, A., “Structural Built-Up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques,” Materials and Structures, V. 49, No. 4, Apr. 2016, pp. 1213-1220. doi: 10.1617/s11527-015-0571-0
68. Benbow, J. J.; Oxley, E. W.; and Bridgwater, J., “The Extrusion Mechanics of Pastes—The Influence of Paste Formulation on Extrusion Parameters,” Chemical Engineering Science, V. 42, No. 9, 1987, pp. 2151-2162. doi: 10.1016/0009-2509(87)85036-4