Pressure-Dependent Shear Behavior of Fresh Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Pressure-Dependent Shear Behavior of Fresh Concrete

Author(s): Tilo Proske, Christian Scheich, and Moien Rezvani

Publication: Materials Journal

Volume: 118

Issue: 6

Appears on pages(s): 29-38

Keywords: fresh concrete; rheometer; shear behavior; variable pressure; yield stress

DOI: 10.14359/51733102

Date: 11/1/2021

Abstract:
The shear behavior of concrete under pressure was investigated using a special test setup using a cylindrical pressure cell. Fresh concrete is sheared under different pressure levels by an adapted concrete rheometer (vane rheometer). In the present study, several shear tests were conducted on concretes with moderate and high flowability at a constant water-binder ratio (w/b) of 0.4. Additional pressure was applied up to 160 kPa. The consistency of the concrete was varied by choosing paste volumes of 300, 310, and 340 L/m3. The results revealed a significant influence of applied pressure on the measured yield torque or yield stress in early concrete ages, especially for concretes with low and moderate flowability (F3 and F5) or with a relatively high volume fraction of aggregates. However, a notable increase of shear resistance by applied pressure was identified for all concretes at a later age of 90 minutes.

Related References:

1. Roussel, N., ed., Understanding the Rheology of Concrete, Woodhead Publishing, Sawston, UK, 2012, 384 pp.

2. Roussel, N., “Rheological Requirements for Printable Concretes,” Cement and Concrete Research, V. 112, 2018, pp. 76-85. doi: 10.1016/j.cemconres.2018.04.005

3. Proske, T., “Frischbetondruck bei Verwendung von Selbstverdichtendem Beton (Formwork Pressure using Self-Compacting Concrete),” dissertation, Technische Universität Darmstadt, Darmstadt, Germany, 2007, 368 pp.

4. Billberg, P. H.; Roussel, N.; Amziane, S.; Beitzel, M.; Charitou, G.; Freund, B.; Gardner, J. N.; Grampeix, G.; Graubner, C.-A.; Keller, L.; Khayat, K. H.; Lange, D. A.; Omran, A. F.; Perrot, A.; Proske, T.; Quattrociocchi, R.; and Vanhove, Y., “Field Validation of Models for Predicting Lateral Form Pressure Exerted by SCC,” Cement and Concrete Composites, V. 54, 2014, pp. 70-79. doi: 10.1016/j.cemconcomp.2014.02.003

5. Roussel, N., “Rheology of Fresh Concrete: From Measurements to Predictions of Casting Processes,” Materials and Structures, V. 40, No. 10, 2007, pp. 1001-1012. doi: 10.1617/s11527-007-9313-2

6. Feys, D.; de Schutter, G.; and Verhoeven, R., “Parameters Influencing Pressure During Pumping of Self-Compacting Concrete,” Materials and Structures, V. 46, No. 4, 2013, pp. 533-555. doi: 10.1617/s11527-012-9912-4

7. Proske, T.; Khayat, K. H.; Omran, A.; and Leitzbach, O., “Form Pressure Generated by Fresh Concrete: A Review about Practice in Formwork Design,” Materials and Structures, V. 47, No. 7, 2014, pp. 1099-1113. doi: 10.1617/s11527-014-0274-y

8. Adam, T.; Proske, T.; Graubner, C.-A.; and Grübl, P., “High-Strength SCC of High Early Strength for the Manufacture of Pre-Tensioned Precast Concrete Elements Composition and Investigation of the Design-Relevant Properties,” Betonwerk + Fertigteil-Technik, V. 12, 2007.

9. Proske, T.; Rezvani, M.; and Graubner, C.-A., “A New Test Method to Characterize the Pressure-Dependent Shear Behavior of Fresh Concrete,” Construction and Building Materials, V. 233, 2020, p. 117255. doi: 10.1016/j.conbuildmat.2019.117255

10. Ovarlez, G., and Roussel, N., “A Physical Model for the Prediction of Lateral Stress Exerted by Self-Compacting Concrete on Formwork,” Materials and Structures, V. 39, No. 2, 2006, pp. 269-279. doi: 10.1617/s11527-005-9052-1

11. Vanhove, Y.; Djelal, C.; and Magnin, A., “Prediction of the Lateral Pressure Exerted by Self-Compacting Concrete on Formwork,” Magazine of Concrete Research, V. 56, No. 1, 2004, pp. 55-62. doi: 10.1680/macr.2004.56.1.55

12. Lange, D. A.; Birch, B.; Henchen, J.; Liu, Y.-S.; Tejeda-Dominguez, F.; and Struble, L. J., “Modeling Formwork Pressure of SCC,” Proceedings of the 3rd North American Conference on the Design and Use of Self-Consolidating Concrete: Challenges and Barriers to Application, S. P. Shah, ed., Chicago, IL, 2008, pp. 295-300.

13. Khayat, K. H., and Assaad, J., “Use of Rheological Properties of SCC to Predict Formwork Pressure,” Proceedings of the Second North American Conference on the Design and Use of Self-Consolidating Concrete and the Fourth RILEM International Symposium on Self-Compacting Concrete, Chicago, IL, 2005, 7 pp.

14. Freund, B., “Frischbetondruck lotrechter, geneigter und gekrümmter Betonbauteile bei Verwendung von Betonen mit hoher Fließfähigkeit,” dissertation, Technische Universität Darmstadt, Darmstadt, Germany, 2017, 278 pp.

15. Proske, T., and Graubner, C.-A., “Pressure on Formwork Using SCC-Experimental Studies and Modelling,” Proceedings of the Fifth RILEM International Symposium on Self-Compacting Concrete, Ghent, Belgium, 2007, pp. 473-478.

16. Perrot, A.; Pierre, A.; Vitaloni, S.; and Picandet, V., “Prediction of Lateral Form Pressure Exerted by Concrete at Low Casting Rates,” Materials and Structures, V. 48, No. 7, 2015, pp. 2315-2322. doi: 10.1617/s11527-014-0313-8

17. DIN 18218:2010-01, “Frischbetondruck auf Lotrechte Schalungen (Pressure of Fresh Concrete on Vertical Formwork),” German Institute for Standardization, Berlin, Germany, 2010, 19 pp.

18. Graubner, C.-A.; Boska, E.; Motzko, C.; Proske, T.; and Dehn, F., “Formwork Pressure Induced by Highly Flowable Concretes - Design Approach and Transfer into Practice,” Structural Concrete, V. 13, No. 1, 2012, pp. 51-60. doi: 10.1002/suco.201100012

19. Specht, M., “Die Belastung von Schalung und Rüstung durch Frischbeton,” dissertation, Technische Universität Hannover, Hanover, Germany, 1973, 213 pp.

20. Mechtcherine, V.; Nerella, V. N.; and Kasten, K., “Testing Pumpability of Concrete Using Sliding Pipe Rheometer,” Construction and Building Materials, V. 53, 2014, pp. 312-323. doi: 10.1016/j.conbuildmat.2013.11.037

21. Haist, M., “Zur Rheologie und den physikalischen Wechselwirkungen bei Zementsuspensionen,” dissertation, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2009, 262 pp.

22. Shyshko, S., “Numerical Simulation of the Rheological Behavior of Fresh Concrete,” dissertation, Technische Universität Dresden, Dresden, Germany, 2013, 225 pp.

23. Ferraris, C. F.; Brower, L.; Beaupré, D.; Chapdelaine, F.; Domone, P.; Koehler, E.; Shen, L.; Sonebi, M.; Struble, L.; Tepke, D.; Wallevik, O.; and Wallevik, J., “Comparison of Concrete Rheometers,” International Tests at LCPC, Nantes, France, Oct. 2000, 157 pp.

24. Wallevik, O. H., “Compendium “Rheology of Coarse Particle Suspensions, such as Cement, Paste, Mortar and Concrete,” The Icelandic Building Research Institute, Reykjavík, Iceland, 2002.

25. Wallevik, J. E., “Rheological Properties of Cement Paste: Thixotropic Behavior and Structural Breakdown,” Cement and Concrete Research, V. 39, No. 1, 2009, pp. 14-29. doi: 10.1016/j.cemconres.2008.10.001

26. Wallevik, O. H., and Wallevik, J. E., “Rheology as a Tool in Concrete Science: The Use of Rheographs and Workability Boxes,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1279-1288. doi: 10.1016/j.cemconres.2011.01.009

27. Feys, D.; Verhoeven, R.; and De Schutter, G., “Fresh Self Compacting Concrete, A Shear Thickening Material,” Cement and Concrete Research, V. 38, No. 7, 2008, pp. 920-929. doi: 10.1016/j.cemconres.2008.02.008

28. Secrieru, E.; Butler, M.; and Mechtcherine, V., “Prüfen der Pumpbarkeit von Beton - Vom Labor in die Praxis,” Bautechnik, V. 91, No. 11, 2014, pp. 797-811. doi: 10.1002/bate.201400072

29. Wallevik, O. H.; Feys, D.; Wallevik, J. E.; and Khayat, K. H., “Avoiding Inaccurate Interpretations of Rheological Measurements for Cement-Based Materials,” Cement and Concrete Research, V. 78, Part A, 2015, pp. 100-109. doi: 10.1016/j.cemconres.2015.05.003

30. Yammine, J.; Chaouche, M.; Guerinet, M.; Moranville, M.; and Roussel, N., “From Ordinary Rheology Concrete to Self Compacting Concrete: A Transition between Frictional and Hydrodynamic Interactions,” Cement and Concrete Research, V. 38, No. 7, 2008, pp. 890-896. doi: 10.1016/j.cemconres.2008.03.011

31. Lecompte, T.; Perrot, A.; Picandet, V.; Bellegou, H.; and Amziane, S., “Cement-Based Mixes: Shearing Properties and Pore Pressure,” Cement and Concrete Research, V. 42, No. 1, 2012, pp. 139-147. doi: 10.1016/j.cemconres.2011.09.007

32. Coussot, P., and Ancey, C., “Rheophysical Classification of Concentrated Suspensions and Granular Pastes,” Physical Review E, V. 59, No. 4, 1999, pp. 4445-4457. doi: 10.1103/PhysRevE.59.4445

33. Assaad, J. J.; Harb, J.; and Khayat, K. H., “Use of Triaxial Compression Test on Mortars to Evaluate Formwork Pressure of Self-Consolidating Concrete,” ACI Materials Journal, V. 106, No. 5, Sept.-Oct. 2009, pp. 439-447.

34. Ritchie, A. G. B., “The Triaxial Testing of Fresh Concrete,” Magazine of Concrete Research, V. 14, No. 40, 1962, pp. 37-42. doi: 10.1680/macr.1962.14.40.37

35. Banfill, P. F. G., Rheology of Fresh Cement and Concrete: Proceedings of an International Conference, Liverpool, 1990, CRC Press, Boca Raton, FL, 2014, 384 pp.

36. Mahboubi, A., and Ajorloo, A., “Experimental Study of the Mechanical Behavior of Plastic Concrete in Triaxial Compression,” Cement and Concrete Research, V. 35, No. 2, 2005, pp. 412-419. doi: 10.1016/j.cemconres.2004.09.011

37. CLUSTER 2: Production and Application of Blended Cements, European Construction in Service of Society.

38. Li, Z.; Ohkubo, T.-A.; and Tanigawa, Y., “Yield Model of High Fluidity Concrete in Fresh State,” Journal of Materials in Civil Engineering, ASCE, V. 16, No. 3, 2004, pp. 195-201. doi: 10.1061/(ASCE)0899-1561(2004)16:3(195)

39. L’Hermite, M. R., and Tournon, M. G., “La Vibration du Béton Frais,” Annales de l’Institut Technique du Bâtiment et des Travaux Publics, 1948.

40. Li, Z., “Investigation of Shear Flow of Self-Compacting Concrete,” Proceedings of the Second International Symposium of Self-Compacting Concrete, COMS Engineering Corporation, Fukui, Japan, 2001.

41. Yim, H. J.; Kim, J. H.; and Kwon, S. H., “Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures,” Materials (Basel), V. 9, No. 3, 2016, p. 147. doi: 10.3390/ma9030147

42. Kim, J. H.; Kwon, S. H.; Kawashima, S.; and Yim, H. J., “Rheology of Cement Paste under High Pressure,” Cement and Concrete Composites, V. 77, 2017, pp. 60-67. doi: 10.1016/j.cemconcomp.2016.11.007

43. Mettler, L. K.; Wittel, F. K.; Flatt, R. J.; and Herrmann, H. J., “Evolution of Strength and Failure of SCC during Early Hydration,” Cement and Concrete Research, V. 89, 2016, pp. 288-296. doi: 10.1016/j.cemconres.2016.09.004

44. Graubner, C.-A., and Proske, T., “Materialversuche zur Reibung und zum Verformungsverhalten von frischem Beton sowie Entwicklung eines analytischen Modells zur Bestimmung der Schalungsbelastung,” Schalungsbelastung durch Hochleistungsbetone mit fließfähiger Konsistenz, 2009.

45. Brameshuber, W.; Beitzel, H.; Beitzel, M.; Bohnemann, C.; Boska, E.; Dehn, F.; Graubner, C.-A.; König, A.; Motzko, C.; Müller, H. S.; Pistol, K.; Proske, T.; Stettner, C.; and Zilch, K., “Formwork Pressure Induced by Highly Flowable Concretes - Material Investigations and Large-Scale Tests,” Structural Concrete, V. 12, No. 4, 2011, pp. 270-280. doi: 10.1002/suco.201000013

46. Graubner, C.-A., and Proske, T., “Frischbetondruck bei Verwendung von Selbstverdichtendem Beton,” Beton- und Stahlbetonbau, V. 104, No. 2, 2009, pp. 88-96. doi: 10.1002/best.200800658

47. Mahaut, F.; Mokéddem, S.; Chateau, X.; Roussel, N.; and Ovarlez, G., “Effect of Coarse Particle Volume Fraction on the Yield Stress and Thixotropy of Cementitious Materials,” Cement and Concrete Research, V. 38, No. 11, 2008, pp. 1276-1285. doi: 10.1016/j.cemconres.2008.06.001

48. Kwon, S. H.; Kim, J. H.; and Shah, S. P., “Development and Applications of the Intrinsic Model for Formwork Pressure of Self-Consolidating Concrete,” International Journal of Concrete Structures and Materials, V. 6, No. 1, 2012, pp. 31-40. doi: 10.1007/s40069-012-0003-2

49. Germann Instruments A/S, ICAR Rheometer - Manual, Copenhagen, Denmark, 2015.

50. Koehler, E. P., and Fowler, D. W., “Development of a Portable Rheometer for Fresh Portland Cement Concrete,” Research Report ICAR–105-3F, International Center for Aggregates Research, The University of Texas at Austin, Austin, TX, 2004, 328 pp.

51. de Larrard, F., Concrete Mixture Proportioning: A Scientific Approach, CRC Press, Boca Raton, FL, 1999, 448 pp.

52. Chateau, X., “Particle Packing and the Rheology of Concrete,” Understanding the Rheology of Concrete, N. Roussel, ed., Woodhead Publishing, Sawston, UK, 2012, pp. 117-143.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer